

​
Acurast Chain

Blockchain Security Audit

Prepared for:
Acurast Association

Date:
23.10.2025

Version:
Final, v1.1

Table of Contents

About Monethic..3
About Project..3
Disclaimer..3
Scoping Details..4

Scope... 5
Timeframe... 5

Vulnerability Classification... 6
Vulnerabilities summary...7
Technical summary.. 9

1. Anyone can delete and replay non-expired incoming messages.......................................9
2. Unbenchmarked weight calculation enabling inexpensive DoS attack....................... 10
3. Incomplete RSA signature verification in attestation validation.................................... 11
4. Flawed report validation enables premature payouts and reputation inflation......12
5. Missing sender-contract validation for Substrate inbound messages.......................... 13
6. Oracle signature threshold can be met with duplicate keys.. 14
7. Missing expiry validation in attestation verification..15
8. Missing check_scheduling_window implementation.. 17
9. Lack of assignment check in advertisement... 18
10. Weak and overly restrictive IPFS script validation.. 19
11. Missing reputation penalties for unreported executions...20
12. The finalize_job extrinsic will always complete..21
13. Incorrect bound used for allowed consumers length check.. 22
14. Incoming message cleanup removes the wrong key..23
15. Inconsistent cleanup logic leaks locked capacity and reduces processor
availability.. 24
16. Integer overflow in storage tracker unlock causes permanent capacity loss........ 25
17. Zero fee and zero amount transfers enable persistent storage bloat.........................26
18. Orphaned fee holds when re-sending the same sender nonce after TTL expiry... 26
19. Refunds for non-Acurast job owners are collected locally and not forwarded.......27
20. Best effort fee transfer leaves residual locked funds...28
21. Underestimated weight in certificate revocation list updates....................................... 29
22. Incomplete cleanup of execution environments on deregistration............................. 30
23. Cross-proxy nonce collision in IBC message ID...31

1

24. Oracle signatures lack domain separation, enabling cross-context replay............. 32
25. Wrong error message emitted in remove_message... 33
26. Centralization concerns... 33

2

About Monethic
Monethic is a young and thriving cybersecurity company with extensive experience in
various fields, including Smart Contracts, Blockchain protocols (layer 0/1/2), wallets
and off-chain components audits, as well as traditional security research, starting from
penetration testing services, ending at Red Team campaigns. Our team of
cybersecurity experts includes experienced blockchain auditors, penetration testers,
and security researchers with a deep understanding of the security risks and challenges
in the rapidly evolving IT landscape. We work with a wide range of clients, including
fintechs, blockchain startups, decentralized finance (DeFi) platforms, and established
enterprises, to provide comprehensive security assessments that help mitigate the risks
of cyberattacks, data breaches, and financial losses.

At Monethic, we take a collaborative approach to security assessments, working
closely with our clients to understand their specific needs and tailor our assessments
accordingly. Our goal is to provide actionable recommendations and insights that help
our clients make informed decisions about their security posture, while minimizing the
risk of security incidents and financial losses.

About Project
Acurast is a decentralized, serverless compute network built on Substrate that turns
smartphones into confidential workers by running jobs inside phone TEEs, and it’s
grown to tens of thousands of active devices. Through its Hyperdrive stack, Acurast
provides bidirectional cross-chain messaging and deploys proxy contracts so users on
external chains can create deployments and reward processors in native tokens.

The network is integrated with ecosystems like Aleph Zero and Vara, enabling dApps on
those chains to offload compute to Acurast’s decentralized cloud.

3

Disclaimer
This report reflects a rigorous security assessment conducted on the specified product,
utilizing industry-leading methodologies. While the service was carried out with the
utmost care and proficiency, it is essential to recognize that no security verification can
guarantee 100% immunity from vulnerabilities or risks.

Security is a dynamic and ever-evolving field. Even with substantial expertise, it is
impossible to predict or uncover all future vulnerabilities. Regular and varied security
assessments should be performed throughout the code development lifecycle, and
engaging different auditors is advisable to obtain a more robust security posture.

This assessment is limited to the defined scope and does not encompass parts of the
system or third-party components not explicitly included. It does not provide legal
assurance of compliance with regulations or standards, and the client remains
responsible for implementing recommendations and continuous security practices.

4

Scoping Details

The purpose of the assessment was to conduct a Blockchain Security Audit against
Acurast Substrate Pallets, shared with the Monethic through the GitHub platform and
selected b04d40b7a9755824701f594d7ae607b15d987f1f commit hash.

Scope

The scope of the assessment includes the files listed below:

●​ p256-crypto

●​ pallets/acurast (excluding
p384 libs)

●​ pallets/acurast/common

●​ pallets/candiate-preselection

●​ pallets/compute

●​ pallets/hyperdrive-ibc

●​ pallets/hyperdrive-token

●​ pallets/hyperdrive

●​ pallets/marketplace

●​ pallets/processor-manager

●​ pallets/rewards-treasury

●​ runtime/acurast-mainnet

●​ runtime/common

GitHub repository:

●​ https://github.com/Acurast/acurast-substrate/

Timeframe

On 21.08.2025 Monethic was requested for Acurast Substrate Pallets security review.
Work began 16.09.2025.

On 03.10.2025, the report from the Blockchain Security assessment was delivered to the
Customer.

Between 13.10.2025 and 21.10.2025 the fix review was performed by the Monethic team.
On 21.10.2025, the Final Report was shared with the Customer.

5

https://github.com/Acurast/acurast-substrate/tree/audit

Vulnerability Classification

All vulnerabilities described in the report were thoroughly classified in terms of the risk
they generate in relation to the security of the contract implementation. Depending on
where they occur, their rating can be estimated on the basis of different
methodologies.

In most cases, the estimation is done by summarizing the impact of the vulnerability
and its likelihood of occurrence. The table below presents a simplified risk
determination model for individual calculations.

​
Vulnerabilities that do not have a direct security impact, but may affect overall code
quality, as well as open doors for other potential vulnerabilities, are classified as
Informational.

6

 Impact

Severity High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

Vulnerabilities summary

7

No. Severity Name Status

1 Critical
Anyone can delete and replay non-expired
incoming messages

Resolved

2 High
Unbenchmarked weight calculation
enabling inexpensive DoS attack

Resolved

3 High
Incomplete RSA signature verification in
attestation validation

Resolved

4 High
Flawed report validation enables
premature payouts and reputation
inflation

Resolved

5 High
Missing sender-contract validation for
Substrate inbound messages

Resolved

6 High
Oracle signature threshold can be met with
duplicate keys

Resolved

7 Medium
Missing expiry validation in attestation
verification

Acknowledged

8 Medium
Missing check_scheduling_window
implementation

Acknowledged

9 Medium Lack of assignment check in advertisement Acknowledged

10 Medium
Weak and overly restrictive IPFS script
validation

Resolved

11 Medium
Missing reputation penalties for unreported
executions

Acknowledged

12 Medium
The finalize_job extrinsic will always
complete

Acknowledged

13 Medium
Incorrect bound used for allowed
consumers length check

Resolved

8

14 Medium
Incoming message cleanup removes the
wrong key

Resolved

15 Medium
Inconsistent cleanup logic leaks locked
capacity and reduces processor
availability

Resolved

16 Low
Integer overflow in storage tracker unlock
causes permanent capacity loss

Resolved

17 Low
Zero fee and zero amount transfers enable
persistent storage bloat

Resolved

18 Low
Orphaned fee holds when re-sending the
same sender nonce after TTL expiry

Resolved

19 Low
Refunds for non-Acurast job owners are
collected locally and not forwarded

Acknowledged

20 Low
Best effort fee transfer leaves residual
locked funds

Resolved

21 Low
Underestimated weight in certificate
revocation list updates

Resolved

22 Low
Incomplete cleanup of execution
environments on deregistration

Acknowledged

23 Low
Cross-proxy nonce collision in IBC message
ID

Resolved

24 Low
Oracle signatures lack domain separation,
enabling cross-context replay

Resolved

25 Informational Wrong error message emitted in
remove_message

Resolved

26 Informational Centralization concerns Resolved

Technical summary

1.​ Anyone can delete and replay non-expired incoming messages

Severity: . Critical .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs:383

Description
The hyperdrive-ibc pallets’s clean_incoming extrinsic is callable by anyone and always
removes an entry from IncomingMessages collection for each provided ID. The TTL is
only checked to decide whether to also remove data from the lookup map, but it is an
optional side effect of the execution.

As a result, anyone can delete and replay a fresh message from the main storage
collection.

for id in ids.iter() {​
 if let Some(message) = <IncomingMessages<T, I>>::get(id) {​
 <IncomingMessages<T, I>>::remove(id);​
 if message.current_block.saturating_add(T::IncomingTTL::get()) <

current_block {​
 <IncomingMessagesLookup<T, I>>::remove(​
 &message.message.sender,​
 message.message.nonce,​
);​
 i += 1;​
 }​
 }​
}

Additionally, although token transfers are safeguarded by per-transfer nonces in
pallets/hyperdrive-token, other Hyperdrive messages routed through
pallets/hyperdrive lack equivalent nonce or seen-set protection.

9

This enables malicious actors to replay these messages, causing duplicate state
updates, inconsistent application logic, repeated event emissions, and wasted
computational resources.

Remediation
We recommend changing the implementation so that the messages are removed from
the IncomingMessages collection only if they are already expired.

2.​ Unbenchmarked weight calculation enabling inexpensive DoS
attack

Severity: . High .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs

-​ runtime/common/src/weight/pallet_acurast_hyperdrive_ibc_weights.rs

Description
The clean_incoming extrinsic processes a list of message IDs while being charged a
flat, static weight - WeightInfo::clean_incoming().

In fact, the runtime weight implementation is only a placeholder and statically
computes weights as DbWeight::reads_writes(3, 3) and does not scale with
ids.len().

As a result, the extrinsic underestimates the true execution cost, which involves multiple
storage reads and writes per item.

Furthermore, if all items are expired, the extrinsic may return Pays::No, allowing
execution with little or no fee. Even though the input is bounded (ids.len() ≤ 50), the
lack of proper benchmarking and per-item scaling enables attackers to repeatedly
invoke this call, inflating block execution time.

Remediation
We recommend performing proper benchmarking of the clean_incoming extrinsic.

10

3.​ Incomplete RSA signature verification in attestation validation

Severity: . High .

Status: Resolved

Location
-​ acurast/common/src/attestation.rs

Description
The RSA certificate signature verification in pallets

acurast/common/src/attestation.rs does not implement full RSASSA-PKCS1 v1.5
checks. When validate encounters the RSA algorithm, it calls validate_rsa(payload,
&cert.signature_value, pbk). This function computes s^e mod n and compares only
the trailing bytes of the result against the SHA-256 digest of the payload.

This approach ignores the RSASSA-PKCS1 v1.5 encoding requirements, which mandate
the presence of a DigestInfo ASN.1 structure and proper 0x00 0x01 FF... 0x00
padding. As implemented, any signature whose modular exponentiation ends with the
correct hash value is accepted, even if the preceding padding or ASN.1 encoding is
invalid.

Because validate_certificate_chain may process RSA-signed root or intermediate
certificates and relies on this routine, malformed RSA signatures could be incorrectly
validated, undermining the authenticity of the certificate chain.

Remediation
We recommend replacing the custom implementation with a standards-compliant
RSASSA-PKCS1 v1.5 verifier from a vetted cryptographic library.

11

4.​Flawed report validation enables premature payouts and
reputation inflation

Severity: . High .

Status: Resolved

Location
-​ pallets/marketplace/src/lib.rs

-​ pallets/marketplace/src/functions.rs

Description
During the processing of the report extrinsic, the do_report function increments the
assignment’s SLA counters and validates timeliness through
update_next_report_index_on_report and check_report_is_timely.

However, this logic only enforces that a report is submitted before the maximum
allowed end time, without requiring that the report occur after the execution has
actually begun or within the intended reporting window.

Before the first execution starts, the execution index defaults to zero, and the
upper-bound condition is satisfied. As a result, repeated calls to report are accepted
and increment sla.met until the total number of executions is reached.

Each accepted report triggers a payout through the reward manager, which deducts
funds from the job’s reserved budget and transfers them to the processor’s manager.

For assignments with a “single” execution strategy, the job budget can be completely
drained before any work is performed. Even under the “competing” strategy, early or
misaligned reports can still trigger rewards because only the “not after end plus
tolerance” condition is enforced.

This flaw directly impacts job owners, whose reserved budgets can be prematurely
depleted without execution, and also distorts system integrity by inflating processor
reputation. Each accepted report not only transfers funds but also emits a reported
event and updates reputation metrics as though valid results were delivered.

Remediation
We recommend strengthening the validation of report submissions to ensure they fall
strictly within the intended execution window.

12

5.​Missing sender-contract validation for Substrate inbound
messages

Severity: . High .

Status: Resolved

Location
-​ pallets/hyperdrive/src/lib.rs

-​ pallets/hyperdrive/src/chain/substrate.rs

Description
On inbound processing, the Hyperdrive pallet accepts messages from
Subject::AlephZero and Subject::Vara without checking that the sender contract
equals the configured on-chain counterparts. The match arm only decodes
message.payload and executes it, i.e., it validates the chain but not the contract
address (nor selector).

By contrast, the hyperdrive-token pallet does enforce the configured contract for
Ethereum and Solana, rejecting mismatches before decoding - it compares
contract_call.contract against the stored config and errors on mismatch.

In outbound, the Substrate sender does populate the recipient with
Self::aleph_zero_contract() and Self::vara_contract(), proving the configuration
exists.

Any payload signed by the oracles and tagged as AlephZero or Vara will be accepted
and executed regardless of which contract emitted it, violating domain separation
between proxy contracts.

Remediation
For Subject::AlephZero(Layer::Contract(call)) and
Subject::Vara(Layer::Contract(call)), compare call.contract with the configured
Self::aleph_zero_contract() and Self::vara_contract() and fail with InvalidSender
on mismatch, exactly like the Ethereum branch.

13

6.​ Oracle signature threshold can be met with duplicate keys

Severity: . High .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs

Description

The check_signatures iterates the provided (Signature, Public) pairs and increments
valid for every pair that verifies within the activity window. There is no set of unique
public keys, so the same oracle key can be supplied multiple times and be counted
multiple times toward min_signatures.

 let mut valid = 0;​
 signatures.into_iter().try_for_each(​
 |(signature, public)| -> Result<(), Error<T, I>> {​
 match <OraclePublicKeys<T, I>>::get(public) {​
 None => {​
 not_found.push((signature.0, public.0));​
 },​
 Some(activity_window) => {​
 // valid window is defined inclusive start_block,

exclusive end_block​
​
 if activity_window.start_block <= current_block​
 && activity_window​
 .end_block​
 .map_or(true, |end_block| current_block <

end_block)​
 {​
 if let Some(r) = &relayer {​
 ensure!(​
 signature.verify(&(message, r).encode()[..],

&public),​
 Error::<T, I>::SignatureInvalid​
);​
 } else {​
 ensure!(​
 signature.verify(&message.encode()[..],

&public),​

14

 Error::<T, I>::SignatureInvalid​
);​
 };​
 valid += 1;​
 } else {​
 outside_activity_window.push((signature.0,

public.0));​
 }​
 },​
 }​
​
 Ok(())​
 },​
)?;

A single oracle (or minority) can satisfy the threshold by duplicating its own signature
entries, subverting the intended multi-party attestation.

Remediation
Deduplicate by public key before incrementing valid. Maintain a BTreeSet<Public> of
used keys and continue if !inserted.

7.​ Missing expiry validation in attestation verification

Severity: . Medium .

Status: Acknowledged

Client shared that “Expiry used to be always validated, but we found out that certain
devices (mostly iOS devices) can provide a very short term expiry date (1-3 days) and
also most importantly only issue the attestation once per key. For those reasons, we
had to change the runtime to check the expiry date of the certificate the attestation is
delivered in only at submission. Furthermore, the attestation is used to attest that a key
was generated in a secure way and protected by the device’s Secure Element / Secure
Enclave, and the device guarantees that the key can only be used to generate
signatures if the device / app integrity was not compromised. ”.

Location
-​ pallets/acurast/src/lib.rs

15

-​ pallets/acurast/src/functions.rs

-​ pallets/acurast/src/utils.rs

Description
The acurast pallet enforces attestation validity only at submission time but fails to
re-validate expiry during subsequent authorization checks.

Specifically, submit_attestation invokes validate_and_store, which uses validate to
call ensure_not_expired::<T>(&attestation) before persisting into
StoredAttestation<T>.

However, later calls to check_attestation to retrieve attestations from storage but only
verify revocation status and key acceptance. The expiry check
(ensure_not_expired::<T>) is omitted.

This oversight affects all functions that rely on check_attestation, including
ensure_source_verified, ensure_source_verified_and_of_type, and the
EnsureAttested implementation.

As a result, expired attestations with Attestation.validity.not_after already passed
may still be accepted as valid, potentially allowing malicious actors to bypass
time-based validity constraints.

Remediation

We recommend modifying check_attestation to include an explicit call to
ensure_not_expired::<T>(&attestation)?. This ensures that on every usage, the
current timestamp retrieved via T::UnixTime::now().as_millis() is compared against
the not_before and not_after fields of the attestation validity period. Enforcing this
check consistently prevents the reuse of expired attestations.

16

8.​Missing check_scheduling_window implementation

Severity: . Medium .

Status: Acknowledged

Location
-​ pallets/marketplace/src/match_checker.rs

Description
In marketplace pallet multiple functions rely on check_scheduling_window function that
is assumed to ensure a specific work can be scheduled. However, it was observed that
this function’s implementation is commented out and simply returns Ok(()).

As a consequence, a matcher can propose matches whose start times fall outside the
expected window, violating the consumer’s constraint and enabling assignments that
should not be allowed.

fn check_scheduling_window(​
 _scheduling_window: &SchedulingWindow,​
 _schedule: &Schedule,​
 _now: u64,​
 _start_delay: u64,​
) -> Result<(), Error<T>> {​
 //match scheduling_window {​
 // SchedulingWindow::End(end) => {​
 // ensure!(​
 // *end >= schedule​
 // .end_time​
 // .checked_add(start_delay)​
 // .ok_or(Error::<T>::CalculationOverflow)?,​
 // Error::<T>::SchedulingWindowExceededInMatch​
 //);​
 // },​
 // SchedulingWindow::Delta(delta) => {​
 // ensure!(​
 //

now.checked_add(*delta).ok_or(Error::<T>::CalculationOverflow)?​
 // >= schedule​
 // .end_time​
 // .checked_add(start_delay)​
 // .ok_or(Error::<T>::CalculationOverflow)?,​
 // Error::<T>::SchedulingWindowExceededInMatch​

17

 //);​
 // },​
 //}​
​
 Ok(())​
 }

Remediation
We recommend implementing meaningful scheduling window checks.

9.​ Lack of assignment check in advertisement

Severity: . Medium .

Status: Acknowledged

Location
-​ pallets/marketplace/src/lib.rs

-​ pallets/marketplace/src/functions.rs

Description
The advertise function explicitly mentions in the comment that currently assigned ads
restrict the possible changes to only capacity updates, while also explicitly prohibiting
changes to pricing. However, we have observed that no such restrictions are
implemented neither in the advertise function itself nor in the do_advertise function
called internally.

In consequence, unexpected pricing changes could occur even when ad is already
assigned.

 /// Advertise resources by providing a [AdvertisementFor].​
 ///​
 /// If the source has another active advertisement, the advertisement is

updated given the updates does not​
 /// violate any system invariants. For example, if the ad is currently

assigned, changes to pricing are prohibited​
 /// and only capacity updates will be tolerated.​
 #[pallet::call_index(0)]​
 #[pallet::weight(< T as Config >::WeightInfo::advertise())]​

18

 pub fn advertise(​
 origin: OriginFor<T>,​
 advertisement: AdvertisementFor<T>,​
) -> DispatchResultWithPostInfo {​
 let who = ensure_signed(origin)?;​
​
 Self::do_advertise(&who, &advertisement)?;​
​
 Self::deposit_event(Event::AdvertisementStored(advertisement, who));​
 Ok(().into())​
 }

Remediation
We recommend implementing a check that would prevent pricing changes when the ad
is currently matched.

10.​ Weak and overly restrictive IPFS script validation

Severity: . Medium .

Status: Resolved

Location
-​ pallets/acurast/common/src/types.rs:30

Description
The is_valid_script function in pallets/acurast/common/src/types.rs validates
scripts by enforcing a fixed length of 53 bytes and requiring the ipfs:// prefix. ​
​
This check is both insufficient and unnecessarily restrictive. It permits arbitrary data
after the prefix, including non-UTF-8 and non-Base58 characters, without verifying
whether the content identifier is a properly structured CIFv0. At the same time, it
incorrectly rejects valid IPFS links that use CIDv1, such as those starting with bafy,
because of the rigid length requirement.

Since the validation logic is used to gate registrations and script edits in
pallets/acurast/src/functions.rs and pallets/marketplace/src/lib.rs , it allows
unusable or malformed scripts to pass while blocking valid IPFS references,
undermining reliability and interoperability.

19

pub fn is_valid_script(script: &Script) -> bool {​
​ let script_len: u32 = script.len().try_into().unwrap_or(0);​
​ script_len == SCRIPT_LENGTH && script.starts_with(SCRIPT_PREFIX)​
}

Remediation
We recommend strengthening the validation logic to properly check the structure of the
CID.

11.​ Missing reputation penalties for unreported executions

Severity: . Medium .

Status: Acknowledged

Location
-​ pallets/marketplace/src/lib.rs

Description

The reputation system does not penalize processors who fail to submit reports.

Reputation updates are only triggered through do_update_reputation, which is invoked
exclusively by the reporting flow. When a job is finalized or an assignment is cleaned
up, no additional reputation adjustment is applied for unconsumed SLA slots.

As a result, if a processor accepts an assignment but fails to report some or all
executions, the discrepancy between the expected and actual reports has no impact on
their reputation.

This allows processors to underperform or skip executions without consequence. At job
finalization, reputation reflects only the reports that were submitted, leaving missing
reports unpenalized. This enables reputation inflation and gaming: a processor can
accept work, provide no results, and still avoid negative reputation effects,
undermining the credibility of the scoring system.

20

Remediation
We recommend extending the finalization and cleanup logic to account for missing
reports. The difference between the total SLA executions and the number of reports
submitted should result in a proportional penalty applied during job closure.

12.​ The finalize_job extrinsic will always complete

Severity: . Medium .

Status: Acknowledged

Location
-​ pallets/marketplace/src/lib.rs:576

-​ pallets/marketplace/src/functions.rs:253

Description
The finalize_job function calls a do_cleanup_assignment function internally and if that
call does not error, the JobFinalized event will be deposited. However, the
do_cleanup_assignment function will not error due to business logic checks, as they are
implemented via if let syntax. This results in this function always returning Ok(())
regardless if any cleanup logic was executed or not. Furthermore, the JobFinalized
event contains only the JobId that is specified by the caller.

No on-chain damage can be done, however anyone can force the pallet into emitting
the JobFinalized event with an arbitrarily chosen JobId, including one that was not
assigned to them. It might lead to confusion and integrity issues, depending on
systems and components listening to those events.

Additionally, it must be noted that it’s possible the finalize_job’s extrinsic
implementation is not finished, or is invalid. The finalize_jobs extrinsic also present in
the same pallet has substantially more complex business logic while also emitting a
JobFinalized event.

 pub(crate) fn do_cleanup_assignment(​
 processor: &T::AccountId,​
 job_id: &JobId<T::AccountId>,​
) -> DispatchResult {​
 if let Some(assignment) = <StoredMatches<T>>::get(processor, &job_id) {​

21

 if let Some(job) = <StoredJobRegistration<T>>::get(&job_id.0, job_id.1)

{​
 let now = Self::now()?;​
 let job_end_time =​

job.schedule.actual_end(job.schedule.actual_start(assignment.start_delay))​
 + T::ReportTolerance::get();​
 if job_end_time < now {​
 <StoredMatches<T>>::remove(processor, job_id);​
 <AssignedProcessors<T>>::remove(job_id, processor);​
 }​
 } else {​
 <StoredMatches<T>>::remove(processor, job_id);​
 <AssignedProcessors<T>>::remove(job_id, processor);​
 }​
 }​
 Ok(())​
 }

Remediation
Return an Err variant in case an Assignment or JobRegistration are not Some.
Additionally, make sure that the current logic of finalize_job extrinsic is correct.

13.​ Incorrect bound used for allowed consumers length check

Severity: . Medium .

Status: Resolved

Location
-​ pallets/marketplace/src/functions.rs

Description
The do_advertise function validates the length of advertisement.allowed_consumers
against a value derived from T::MaxAllowedSources.

This is a semantic mismatch, since the allowed_consumers field is defined in
pallets/marketplace/src/types.rs as a bounded vector parameterized by
T::MaxAllowedConsumers.

22

On mainnet, MaxAllowedConsumers is configured as 100, while MaxAllowedSources is
configured as 1000.

This would create inconsistencies in runtime behavior and potentially permit
configurations that violate protocol assumptions.

Remediation

We recommend correcting the validation logic by replacing the reference to
T::MaxAllowedSources with T::MaxAllowedConsumers in do_advertise.

14.​ Incoming message cleanup removes the wrong key

Severity: . Medium .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs:355

-​ pallets/hyperdrive-ibc/src/lib.rs:387

Description
The receive_message extrinsic in the hyperdrive-ibc pallet saves data into
IncomingMessagesLookup storage map using the recipient and id as key tuple. The id
is constructed as a hash of the message’s sender and its nonce. It was observed that
the clean_incoming extrinsic is attempting to remove data from this collection if an
associated message is expired. However, removal is attempted using the message's
sender and just its nonce which does not match the key used to save it in the first place.
As a consequence, the IncomingMessagesLookup collection will always be increasing in
size.

Remediation

We recommend changing the storage removal implementation so that it uses the
storage key matching one used to create a given entry.

23

15.​ Inconsistent cleanup logic leaks locked capacity and reduces
processor availability

Severity: . Medium .

Status: Resolved

Location
-​ pallets/marketplace/src/lib.rs

Description
The cleanup_storage extrinsic removes assignment indices (AssignedProcessors and
StoredMatches) for a job_id when StoredJobRegistration is already missing, but it
never invokes StorageTracker::unlock.

As a result, storage locked during matching (StorageTracker::lock) is not released
back into the processor’s StoredStorageCapacity. Since the job metadata is gone at
this point, the pallet no longer has enough information to restore capacity, leaving the
reduction permanent.

This issue extends beyond the Root-only cleanup path. Both do_cleanup_assignment
(used in finalize_job) and cleanup_previous_execution_matches (automatic cleanup
in the competing model) also remove StoredMatches and AssignedProcessors without
calling unlock. This means capacity leaks occur not only through manual cleanup but
also during normal operation, whenever processors fail to acknowledge or when
assignments expire.

While some finalization and deregistration flows correctly call unlock when
StoredJobRegistration is still available, the inconsistency across cleanup paths creates
a systemic loss of recorded capacity. Over time, repeated cleanups can compound the
leak across many processors, preventing them from meeting capacity requirements
and effectively locking them out of future job assignments.

This creates a long-lived, network-wide reduction in available processor capacity,
leading to a gradual denial of service. Unless corrected out of band, affected
processors may be permanently unable to accept new jobs despite having sufficient
real resources.

24

Remediation

We recommend ensuring that all cleanup paths consistently restore processor capacity
by invoking StorageTracker::unlock before removing the assignment state.

16.​ Integer overflow in storage tracker unlock causes
permanent capacity loss

Severity: . Low .

Status: Resolved

Location
-​ pallets/marketplace/src/lib.rs

Description
The StorageTracker::unlock function attempts to increase available storage capacity
using checked_add.

On overflow, checked_add returns None, which is written directly back into the
StoredStorageCapacity state. Despite this failure, the function still returns success,
effectively erasing the processor’s storage capacity. This allows a malicious or
accidental overflow condition to permanently disrupt the affected processor’s ability to
participate in assignments.

Once overflow occurs, subsequent reports or finalizations leave the victim’s capacity
entry set to None. Any future matching attempts will then fail with CapacityNotFound,
blocking the processor from being assigned new jobs until they re-advertise.

Remediation

We recommend introducing strict overflow handling in the unlock logic. The function
should reject operations that would exceed the maximum representable value,
returning an explicit error instead of silently writing None.

25

17.​ Zero fee and zero amount transfers enable persistent storage
bloat

Severity: . Low .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs:210

Description
The send_test_message extrinsic is publicly callable, accepts arbitrary fee (including
zero) and TTL, and inserts new OutgoingMessages without requiring any storage deposit
or enforcing a minimum fee.

Attackers can repeatedly send zero-fee, long-TTL messages, cheaply filling
OutgoingMessages and relayer queues.

Remediation

We recommend enforcing nonzero minimums for both amount and fee in
transfer_native. Also we recommend requiring either a storage deposit or a nonzero
minimum fee for send_test_message.

18.​ Orphaned fee holds when re-sending the same sender nonce
after TTL expiry

Severity: . Low .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs

Description
The do_send_message function in pallets/hyperdrive-ibc allows overwriting an
existing OutgoingMessages entry once its TTL has expired (ttl_block <

current_block). However, when this overwrite occurs, the pallet does not release the
previously held fee associated with the old message.

26

Since fee holds are tracked globally under HoldReason::OutgoingMessageFee rather
than keyed per message, the overwrite erases the storage reference to the old hold. As
a result, the original funds remain locked indefinitely and cannot be recovered, leaving
orphaned fee holds.

Users or automated processes that resend the same (sender, nonce) after TTL expiry
will create new holds without releasing the old ones. Over time, this can trap significant
funds in unreleasable holds, reducing available balances and causing systemic fund
loss.

Remediation

We recommend updating do_send_message to explicitly release the existing fee hold
when an expired message entry is overwritten. Holds should be keyed per message or
include metadata linking them to their originating OutgoingMessages entry, ensuring
they can always be released when a message is replaced or cleaned up.

19.​ Refunds for non-Acurast job owners are collected locally and
not forwarded

Severity: . Low .

Status: Acknowledged

Location
-​ pallets/marketplace/src/payments.rs:227

Description
Whenever the job owner is cross-chain, i.e. it is not Acurast, refunds are transferred to a
local hyperdrive pallet’s account with a TODO note to later forward it to the proxy chain.
However, currently there is no way to send those funds back to the external owner,
resulting in stuck refunds.

match &job_id.0 {​
 MultiOrigin::Acurast(who) => {​
 Currency::transfer(​
 &pallet_account,​
 who,​
 remaining.saturated_into(),​

27

 Preservation::Preserve,​
)?;​
 },​
 MultiOrigin::Tezos(_)​
 | MultiOrigin::Ethereum(_)​
 | MultiOrigin::AlephZero(_)​
 | MultiOrigin::Vara(_)​
 | MultiOrigin::Ethereum20(_)​
 | MultiOrigin::Solana(_) => {​
 Currency::transfer(​
 &pallet_account,​
 // TODO refunded amount is collected on

hyperdrive_pallet_account but not yet refunded to proxy chain​
 &hyperdrive_pallet_account,​
 remaining.saturated_into(),​
 Preservation::Preserve,​
)?;​
 },​
 };

Remediation
Implement the outbound refund path through Hyperdrive or explicitly restrict
cross-chain registrants until refunds are fully supported end-to-end.

20.​ Best effort fee transfer leaves residual locked funds

Severity: . Low .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs:239

Description
The confirm_message_delivery function in the Hyperdrive IBC pallet uses
transfer_on_hold with Precision::BestEffort, Restriction::OnHold, and
Fortitude::Polite. This configuration allows the transfer to succeed even if less than
the full fee is moved.

28

Afterward, the code unconditionally removes the message from storage. As a result, if
only a partial transfer occurs, the leftover held balance remains permanently locked
under OutgoingMessageFee with no mechanism to release it.

Residual fee holds accumulate when full payout does not occur. These stranded
balances cannot be reclaimed or released, leading to permanent loss of funds for
affected payers. Over time, multiple such events could degrade system usability by
locking balances in inaccessible holds.

Remediation

We recommend providing recovery logic to detect and release orphaned holds left
behind by partial transfers.

21.​ Underestimated weight in certificate revocation list updates

Severity: . Low .

Status: Resolved

Location
-​ pallets/acurast/src/lib.rs

Description
The root-only extrinsic update_certificate_revocation_list in
pallets/acurast/src/lib.rs applies a batch of updates but charges weight as if only
a single storage write were performed. The function accepts updates:
BoundedVec<CertificateRevocationListUpdate,

T::MaxCertificateRevocationListUpdates> and iterates over each entry, either
inserting or removing values from Acurast::StoredRevokedCertificate<T> (keyed by
SerialNumber).

Although multiple updates may be processed in a single call, the weight function
defined in runtime/common/src/weight/pallet_acurast.rs (fn
update_certificate_revocation_list() -> Weight) assigns a constant cost and
accounts for only one database write via T::DbWeight::get().writes(1). Since the
runtime configuration sets type MaxCertificateRevocationListUpdates =

frame_support::traits::ConstU32<10>, a call may perform up to 10 storage
modifications while incurring weight charges for only one.

29

This discrepancy results in systematic underestimation of runtime costs, with up to ~9
additional writes and loop overhead unaccounted for. While the extrinsic is restricted to
Root origin, the miscalculated weight introduces inaccuracies in resource usage
accounting and may undermine system performance modeling.

Remediation

We recommend modifying the weight function signature to account for the number of
updates processed. Additionally, given that the update_certificate_revocation_list
extrinsic is critical for the system’s overall integrity, registering it with
DispatchClass::Mandatory should be considered.

22.​ Incomplete cleanup of execution environments on
deregistration

Severity: . Low .

Status: Acknowledged

Location
-​ pallets/acurast/src/lib.rs

-​ pallets/acurast/src/functions.rs

Description

The deregistration process fails to fully remove per-job execution environment entries,
leaving orphaned storage records under Acurast::ExecutionEnvironment.
Environments are stored as a StorageDoubleMap keyed by (JobId<T::AccountId>,
T::AccountId). These entries are populated via set_environments, which accepts
BoundedVec<(T::AccountId, EnvironmentFor<T>), T::MaxSlots>.

Although each call is bounded by T::MaxSlots, repeated invocations allow more than
T::MaxSlots unique sources to accumulate for a single job. During deregistration,
deregister_for invokes clear_environment_for, which calls
<ExecutionEnvironment<T>>::clear_prefix(job_id, T::MaxSlots::get(), None). This
clears at most T::MaxSlots entries and ignores any remaining cursor, leaving
additional entries under the same job_id permanently stored.

30

As a result, orphaned (JobId, source) -> EnvironmentFor<T> mappings persist after
deregistration, causing unnecessary storage growth and the risk of stale material
lingering in the system.

Remediation
We recommend updating the cleanup logic to ensure the complete removal of all
environment entries for a given job.

23.​ Cross-proxy nonce collision in IBC message ID

Severity: . Low .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs

-​ pallets/hyperdrive-token/src/lib.rs

Description

Outgoing IBC messages are deduped by id = hash((sender, nonce)). The
hyperdrive-token pallet constructs nonce as hash_of(&transfer_nonce) where
transfer_nonce is a per-proxy counter and the sender is the constant pallet account.

In IBC, dedup and lookup is indexed by (sender, nonce) and the duplicate check
consults OutgoingMessages(id) for TTL. Two transfers to different proxies that currently
share the same numeric transfer_nonce will produce the same nonce hash, and with
the same sender (pallet account), they collide on id. The second send is rejected with
MessageWithSameNoncePending until the first’s TTL expires.

A potential attacker issuing concurrent transfers to two proxies at the same local nonce
can block one of them until TTL elapses, creating a liveness issue on multi-proxy usage.

Severity of an issue was reduced as for now only one proxy is actively supported - it will
become problematic once multiple proxies are enabled.

31

Remediation

Domain-separate the nonce by including proxy (and optionally recipient) into the
hashed nonce preimage, or move the recipient and proxy into the message_id hashing
them directly.

24.​ Oracle signatures lack domain separation, enabling
cross-context replay

Severity: . Low .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs:404

Description

The oracle signature verification logic in check_signatures validates signatures over
raw SCALE-encoded data (MessageFor and optionally (message, relayer)) without
adding a domain separator or chain identifier. This means the signed payloads are not
bound to the pallet, protocol, or network where they are used.

Without domain separation, oracle signatures generated in one context (for another
pallet, chain, or network that uses an identical struct and SCALE encoding) can be
reused here. Since the verifier only checks the raw bytes against oracle keys, the same
signature can be replayed across contexts.

An attacker who can obtain valid oracle signatures elsewhere could replay them to
satisfy verification in this pallet. This would allow unauthorized message acceptance or
illegitimate fee claims, provided the attacker can construct identical SCALE-encoded
bytes.

Remediation
We recommend introducing explicit domain separation in signature verification by
prefixing the encoded payload with a protocol identifier, chain ID, or pallet-specific
domain tag. This ensures oracle signatures are only valid in their intended context and
cannot be replayed elsewhere.

32

25.​ Wrong error message emitted in remove_message

Severity: . Informational .

Status: Resolved

Location
-​ pallets/hyperdrive-ibc/src/lib.rs:301

Description
The remove_message extrinsic in hyperdrive-ibc pallet returns an error of type
CouldNotHoldFee when Currency::release call fails. This is incorrect in this context, as
there is a CouldNotReleaseHoldFee error implemented for this purpose.

T::Currency::release(​
 &HoldReason::OutgoingMessageFee.into(),​
 &message.payer,​
 message.fee,​
 Precision::BestEffort,​
)​
.map_err(|_| Error::<T, I>::CouldNotHoldFee)?;

Remediation
We recommend changing the return error type to the appropriate one.

26.​ Centralization concerns

Severity: . Informational .

Status: Resolved

Location
-​ Observed in many places throughout the codebase

Description
It was observed that RootOrigin (enforced via ensure_root function call) is used in
many places throughout the codebase for extrinsics implementing administrative
operations. Using RootOrigin decreases the decentralization aspect of the whole
protocol and introduces a single point of failure into the system.

33

 Code Blocks -> Language -> Agate with background

Remediation
We recommend introducing Committees that would be responsible for performing
administrative operations.

END OF THE REPORT

34

	About Monethic
	
	About Project
	Disclaimer
	Scoping Details
	Scope
	Timeframe

	Vulnerability Classification
	Vulnerabilities summary
	
	Technical summary
	1.​Anyone can delete and replay non-expired incoming messages
	2.​Unbenchmarked weight calculation enabling inexpensive DoS attack
	3.​Incomplete RSA signature verification in attestation validation
	4.​Flawed report validation enables premature payouts and reputation inflation
	5.​Missing sender-contract validation for Substrate inbound messages
	6.​Oracle signature threshold can be met with duplicate keys
	7.​Missing expiry validation in attestation verification
	8.​Missing check_scheduling_window implementation
	9.​Lack of assignment check in advertisement
	10.​Weak and overly restrictive IPFS script validation
	11.​Missing reputation penalties for unreported executions
	12.​The finalize_job extrinsic will always complete
	13.​Incorrect bound used for allowed consumers length check
	14.​Incoming message cleanup removes the wrong key
	15.​Inconsistent cleanup logic leaks locked capacity and reduces processor availability
	16.​ Integer overflow in storage tracker unlock causes permanent capacity loss
	17.​ Zero fee and zero amount transfers enable persistent storage bloat
	18.​Orphaned fee holds when re-sending the same sender nonce after TTL expiry
	19.​Refunds for non-Acurast job owners are collected locally and not forwarded
	20.​Best effort fee transfer leaves residual locked funds
	21.​ Underestimated weight in certificate revocation list updates
	22.​Incomplete cleanup of execution environments on deregistration
	23.​Cross-proxy nonce collision in IBC message ID
	24.​Oracle signatures lack domain separation, enabling cross-context replay
	25.​Wrong error message emitted in remove_message
	26.​Centralization concerns

