Tezos Foundation
Pentest tzBTC Android App

Document Name: report_89395_Pentest_tzBTC_Android_App_v1.0.docx
Version: v1.0

Project Number: 89395

Date of Delivery: March 27", 2024

Time of Test: March 18", 2024 - March 22", 2024

Author: Lukasz Dykcik, Compass Security Schweiz AG
Classification: STRICTLY CONFIDENTIAL

Compass Security Schweiz AG, Werkstrasse 20, CH-8645 Jona
T +41 58 510 36 00, team.csch@compass-security.com, www.compass-security.com

SECURITY

Gb‘ ' kSECURITY

Compass Security Schweiz AG conducted a security assessment of the tzBTC acurast processor app. This
section briefly highlights the most important results and provides recommendations for future steps. Technical
details are provided in subsequent chapters.

Executive Summary

Results

The performed review of the mobile app did not result in a discovery of any high-rated vulnerabilities. The concept
of using mobile devices with a hardware security element to provide decentralized validation used by tzBTC, as
well as its implementation, was rated as mature. Nevertheless, a few security deficiencies have been identified
and a number of possible attacks that would eradicate the trust put in the tzBTC processors have been found.

The following diagram gives an overview of the identified vulnerabilities and their severity:

m Critical
m High
Medium

Low

0 0

tzBTC Android App Analysis

General Recommendations
Compass Security recommends that critical vulnerabilities be immediately reviewed and addressed.

All remaining issues listed in the vulnerability table in chapter 3 as well as the presented possible attack vectors
described in chapter 2 should be discussed internally. The risk of all the vulnerabilities should be assessed and
addressed based on the company-internal risk management process and the technical rating proposed by
Compass Security.

Gb‘ ' kSECURITY

Table of Contents

EXECUTIVE SUMMARY ..ot e e e e 2
LR LYY U] L (O PRPPPRPRRNt 2
General RECOMMENUALIONScoiiiiiiiie e e e e e e e aeaeaas 2

1 OVERVIEW. ... et eas 4
1.1 DOCUMENE SITUCTUIEeeteieteieieteieieteteeeeeeeee et e e st senee s ensnenennnsnsnnnrnnnne 4
S ot o Lo IR= U o B o (0Tt [0 =R PEPR 4

2 POSSIBLE ATTACK VECTORSottt 5
2% N v4 = 0 O AN g (o [0 Lo I Y o] o B Y g = 1] SRS 5

3 VULNERABILITIES AND REMEDIATION ..couiiiiiiiee e 7
3.1 tZBTC ANAroid APP ANGIYSISoeeiiiiiieiiiiit ittt e e s anbe e e e e s e e e e 7

4 TZBTC ANDROID APP ANALYSIS ..o 10
o R @ YT V1 O TP PP PP PPPPR PP 10
4.2 BaSIC INFOIMALIONeiiieeiiie ettt e e e e e s s ab bbbt e e e e e e e s e bbb b e et e e e e e s e nnnneees 10
4.3 App Development & REICASEcccoev i 13
4.4 DEVICE SECUNLY cccee e e 15
4.5 Network CommuUNICAtioN...........coooiiiiii 17
4.6 ANArOId KEYSIOIE ... eeiiiiiiiiee ettt ettt et e e e e st bt e e e sabb e e e e aabb e e e e sbbeeeeabneeeeans 18
4.7 Device AtteStatioN ... 19
4.8 JOD EXECULION ..o 23

D AP P EN DD X e e 25
5.1 Compass WeakneSSeS RALINGccccciiiiiiiiie ittt sttt s s e e n e e e aa e aean e e e 25
IV A = Tol g [=To) [0] (o] ¢ o o [PO PP PP PPPPUPPR 25

SECURITY

This document is intended for project teams, development personnel, and other individuals concerned with the
security of the tested app. The purpose of this document is to summarize the results of the security assessment.

1 Overview

1.1 Document Structure

Executive summary

1 Document overview, scope, and procedure

2 A list of the possible attack vectors as well as suggestions for their mitigation
3 A list of the identified weaknesses as well as suggestions for improvement

4 Protocol of the performed security tests

5 Appendix

1.2 Scope and Procedures

The security assessment covered the following:

tzBTC Acurast Processor App M1 Android App Review 4 PD

2 Possible Attack Vectors

GP‘ ' kSECU RITY

This chapter summarizes the attack vectors that are not immediately possible to be performed but their execution would require exploiting an additional vulnerability. A definition for each

table column is given here:

Reference to the
corresponding test case in
the following chapters, if
applicable.

Each attack is
numbered
consecutively.

Explains the attack

the assessment.

2.1 tzBTC Android App Analysis

scenario identified during

Explains the preconditions

exploited.

Explanation how the attack Compass rating of the
of the attack scenario to be can be avoided or

Comment and

difficulty performing the information provided
mitigated. attack: by the customer.
= Low
= Medium
= High.

Faking Attestation

An attacker could obtain the valid key
attestation by installing the app on an
older non-rooted device. Then, by
exploiting a privilege escalation
vulnerability, the attacker will be able to
undermine the app's integrity during
runtime.

Job Escape

An attacker could deploy a malicious job
on processors used for tzBTC. Then,
exploit a weakness in the job processing
component of the app and obtain code
execution in the context of the Android
app, not restricted by the JavaScript
execution environment. Once the attacker
is able to execute code within the app,
using the cryptographic keys stored in the
Keystore is not restricted.

The attacker would need to be able to
obtain root privileges on any of the
allowed Android OS versions without
unlocking the boot loader. For this an
arbitrary local privilege elevation exploit
would suffice.

Note that there are already publicly
available proof-of-concept exploits for
older Android OS.

This attack requires the ability to run
attacker-controlled malicious jobs on
processors used for the tzBTC.
Furthermore, as just executing a job
would not lead to the compromise of the
tzBTC since each job uses its own keys,
the attacker would need to escape from
the job context into the app context.

The OS version and OS patch level
values are present in the key attestation
in the reliable teeEnforced sequence.
These values should be considered when
labelling the device as attested. Ideally,
only the latest patch level should be
required to pass attestation and
re-attestation should be performed after
each patch release.

For the tzBTC, it is already intended that Medium
the used processors only accept jobs

from one specified account. It needs to be

ensured that this account is appropriately
protected from unauthorized access.

Alternatively, multiple accounts could be

used. A subset of processors used for

tzBTC could accept jobs only from one

account and another subset only from the

other account. In this way, even if the

attacker compromised one of the

accounts and exploited some processors

with a malicious job, other processors

would remain unaffected.

App Installation on a Compromised
Device

The attack would work as follows: an
attacker compromises an older Android
device and establishes persistence on the
device that allows it to be updated to one
of the versions of the Android OS that are
considered acceptable in the attestation,
without losing root access.

Compromising Locked Down Device

This attack could be performed after the
app was provisioned on a not
compromised device and attestation was
successfully completed. The attacker
would then attempt to exploit the locked
down device to manipulate the integrity of
the app running on it.

A way of rooting a device and establishing
persistence that survives factory reset
required for app provisioning is needed.
Also, the way of maintaining root
privileges on the device should not rely on
unlocking the bootloader or modifying the
boot partition since those changes would
affect the key attestation. Furthermore, if
the Android OS version that could be
used to get the required persistent root
access is not considered acceptable in
the attestation, a way of maintaining root
access after updating the device will be
required.

The attacker would need to exploit one of
the exposed interfaces of the locked down
device. Currently devices expose mostly
the Wi-Fi and the USB mass storage
interfaces. The exploit would either need
to provide code execution on the Android
device with root privileges or another
privilege escalation exploit would need to
be used afterwards.

Note that the attacker is not restricted to a
particular device hardware model as
plenty of Android devices would be
accepted as processors and exploitation
of the exposed interfaces may be
noticeably easier on some of the devices.

It should be ensured that only latest patch Medium

levels of the Android OS are accepted for
the attestation. Furthermore, regular Play
Integrity checks should be performed to
take advantage of the Google API
providing device integrity checks.

The locked down device should expose
as few interfaces as possible. It is already
planned to disable USB mass storage as
it will not be needed in further releases.
Furthermore, it should be considered that
only devices from established
manufacturers such as Google are
accepted for the attestation of tzBTC
processors.

High

GP‘ ' kSECU RITY

N e e

3 Vulnerabilities and Remediation

Gb‘ ' kSECU RITY

This chapter summarizes the security issues found during the security review. A definition for each table column is given here:

Each issue is Reference to the Explains the weakness
numbered corresponding test case in identified during the
consecutively. the following chapters. assessment.

3.1 tzBTC Android App Analysis

Explains the impact of the
weakness if it were to be

Recommendation on how Compass rating of the Comment and
to address the weakness. weakness and the information provided
corresponding threat: by the customer.
= Critical
= High
= Medium
= Low
= Info

See chapter 5 for a
detailed rating description
and color code definition.

N 2 e S T S [S 77 T

4.7 #1 Spoofed Attestation Although in the key attestation present on
the acurast parachain, it is shown that the
Untrustworthy devices with unlocked root of trust for the key is not appropriate,
bootloader and modified boot partition are relying on the values shown in the acurast
shown as attested in the acurast console. console leads to the false conclusion.

2. 43.1#1 Unsupported Android Versions Security updates are no longer available
for devices running this specific version of
The minimum API level of the app is set Android. An Attacker could exploit known
to 30. This API level corresponds to an vulnerabilities to gain root privileges on
Android version that is no longer the device and compromise the integrity
supported. of the app and the data it processes.

It should be ensured that the values Medium
shown in the acurast console are

trustworthy. In particular, all relevant

elements of the key attestation, in

particular the root of trust, should be

correctly evaluated before the device is

labeled as attested.

Only Android versions that can receive Medium
security patches should be supported by
the app.

Gb‘ ' kSECU RITY

e e e r—— L

4.7 #5,6
4. 4.3.2#5
& 4.3.2 #6
6. 4.4.1#1
4.4.2#1

Vague Chain of Trust

Users of the tzBTC can barely verify the
trust assumptions on their own.

Although the original, unparsed key
attestations are present on the
blockchain, to find them, particular
transactions would need to be found.
Parsed key attestations are put in the on-
chain storage and are easily browsable,
however, the validity of the attestation
cannot be inducted from this parsed data.
Furthermore, the integrity of the app
cannot be externally verified as no hash
of it is present in the attestation.

No Stack Canaries

The app uses libraries that were not
compiled with stack canaries:

= libsweet_b.so.
No Relocation Read-Only (RELRO)
The libj2v8.so library for arm64 is not

compiled with the Relocation Read-Only
(RELRO) enabled.

Play Integrity Not Used

The Play Integrity API provided by Google
is not used to detect whether the device
where the app runs is rooted.

During the initial deployment of the app, a
malicious version signed with the same
certificate could be deployed and users of
tzBTC would not be able to determine
whether the legitimate or malicious app
has access to the attested private key.
Also, verification of the key attestation of
the processor is cumbersome.

Stack canaries, also called stack cookies,
are placed after buffers in a program to
guard against buffer overflow
vulnerabilities. If this feature is not
enabled, the executable does not make
use of this additional layer of protection.

When RELRO is not enabled in Android
binary libraries, it leaves the door open for
attackers to exploit memory-related
vulnerabilities more easily. Without
RELRO, the Global Offset Table (GOT)
remains writable, and an attacker could
potentially manipulate function pointers
and control the program's execution flow.

Without using the Play Integrity API, the
trustworthiness of the job's execution on
the processor may be diminished by
attacks on the device's integrity that
occurred after the initial key attestation
and are detectable by Play Integrity.

The issues should be mitigated to provide
an easy way for users of the tzBTC to
verify that only the legitimate app can use
the attested private key.

Note that it is already planned to provide
a user-friendly view of the processors' key
attestations and the problem of trusting
the initial app installation is also planned
to be addressed.

Only libraries with enabled stack canaries
should be used.

Only libraries with RELRO enabled should
be used.

The app should call the Play Integrity API
at important moments to get a proof that
job results are coming from the
unmodified app binary running on a
genuine Android device.

More information:

= https://developer.android.com/google
[play/integrity

Low

Low

Low

https://developer.android.com/google/play/integrity
https://developer.android.com/google/play/integrity

-
SECURITY

N e e S S [S 77 T

4.8 #4
452#1

Job for tzBTC Still in Development

During the tests, the actual job code of
the tzBTC was not yet ready. The security
of the tzBTC was reviewed based on jobs
with similar functionalities and the
not-yet-finished tzBTC job.

It should be reviewed whether the final Info
version of the tzBTC job differs

significantly from the analyzed jobs and

possibly introduces vulnerabilities into the
tzBTC that could not be discovered during

the performed security audit.

4 tzBTC Android App Analysis

4.1 Overview

4.1.1 Backend Environment / URIs

acurast-canarynet-node.prod.gke.acurast.com

4.1.2 Devices

CANARY environment

e‘ >‘ ' kSECURITY

Pixel 4a

Pixel 4a

Pixel 7a

4.2 Basic Information

. Description of Test Expected Result Actual Result PASS
FAIL

App Name
2. Version Name
3. Version Code
4. Package Name

s SHA256 Checksum of the app

6. Contents of AndroidManifest.xml

7. App Screenshot

Details #6
Android Manifest:

<?xml version="1.0" encoding="utf-8"?>

<manifest android:versionCode="26" android:versionName="1.4.0-canary"
android:compileSdkVersion="33" android:compileSdkVersionCodename="13"
package="com.acurast.attested.executor.canary" platformBuildVersionCode="33"
platformBuildVersionName="13"
xmlns:android="http://schemas.android.com/apk/res/android">
<uses-sdk android:minSdkVersion="30" android:targetSdkVersion="33" />

REQUEST INSTALL PACKAGES"
.ACCESS_NETWORK_STATE"
CHANGE WIFI STATE"

<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
<uses-permission
/>
<uses-permission
<uses-permission
<uses-permission

android:
android:
android:
android:
android:
android:
android:

android:
android:
android:

name="android.
name="android.
name="android.
name="android.
name="android.

name="android

name="android.

name="android.
name="android.
name="android.

Acurast Processor

1.4.0-canary

permission.
permission
permission.
permission.
permission
.permission.
permission.

.SCHEDULE EXACT ALARM"
RECEIVE BOOT COMPLETED"
REQUEST IGNORE BATTERY OPTIMIZATIONS"

permission
permission.
permission.

.WAKE LOCK"
FOREGROUND SERVICE"
QUERY ALL PACKAGES"

N/A

N/A

com.acurast.attested.execu N/A

5569b4db6e759fc8c82754 N/A
2e125c6ed1cd7933a25d5¢
ecedc5c0c9ead4733d2a

N/A

N/A

/>

/>

Gb‘ ' kSECURITY
<permission

android:name="com.acurast.attested.executor.canary.DYNAMIC RECEIVER NOT EXPORTED PERMISSION"
android:protectionLevel="signature" />
<uses-permission
android:name="com.acurast.attested.executor.canary.DYNAMIC RECEIVER NOT EXPORTED PERMISSION"
/>
<application android:theme="@style/Theme.Acurast" android:label="@string/app name"
android:icon="@mipmap/ic_ launcher" android:name="com.acurast.attested.executor.App"
android:testOnly="false" android:supportsRtl="true" android:extractNativeLibs="false"
android:roundIcon="@mipmap/ic_launcher round"
android:appComponentFactory="androidx.core.app.CoreComponentFactory">
<service android:name="com.acurast.attested.executor.services.V8ExecutorService"
android:enabled="true" android:exported="true" />
<service android:name="com.acurast.attested.executor.services.JobFetcherService"
android:enabled="true" android:exported="true" />
<service android:name="com.acurast.attested.executor.services.HeartbeatService"
android:enabled="true" android:exported="true" />
<service android:name="com.acurast.attested.executor.services.OTAUpdateService"
android:enabled="true" android:exported="true" />
<receiver android:name="com.acurast.attested.executor.InstallReceiver" />
<receiver android:name="com.acurast.attested.executor.JobFetcherBroadcastReceiver"
android:enabled="true" android:exported="true">
<intent-filter android:directBootAware="true">
<action android:name="android.intent.action.BOOT COMPLETED" />
<action android:name="android.intent.action.LOCKED BOOT COMPLETED" />
<action android:name="android.intent.action.QUICKBOOT POWERON" />
<action android:name="android.intent.action.REBOOT" />
</intent-filter>
</receiver>
<receiver android:name="com.acurast.attested.executor.HeartbeatBroadcastReceiver"
android:enabled="true" android:exported="true" />
<receiver android:name="com.acurast.attested.executor.0TAUpdateBroadcastReceiver"
android:enabled="true" android:exported="true" />
<receiver android:name="com.acurast.attested.executor.V8ExecutorBroadcastReceiver"
android:enabled="true" android:exported="true" />
<receiver
android:name="com.acurast.attested.executor.AlarmPermissionBroadcastReceiver"
android:enabled="true" android:exported="true">
<intent-filter>
<action
android:name="android.app.action.SCHEDULE EXACT ALARM PERMISSION STATE CHANGED" />
</intent-filter>
</receiver>
<activity android:theme="@style/Theme.Acurast"
android:name="com.acurast.attested.executor.ui.MainActivity" android:exported="true"
android:excludeFromRecents="true" android:launchMode="singleInstance">
<intent-filter>
<category android:name="android.intent.category.HOME" />
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />
<data android:scheme="http" android:host="executor.acurast.com" />
</intent-filter>
<intent-filter>
<action android:name="android.app.action.PROVISIONING SUCCESSFUL" />
<action android:name="android.app.action.PROFILE PROVISIONING COMPLETE" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
<receiver android:label="@string/app name"
android:name="com.acurast.attested.executor.lockdown.LockdownDeviceAdminReceiver"
android:permission="android.permission.BIND DEVICE ADMIN" android:exported="true"
android:description="@string/app name">
<meta-data android:name="android.app.device admin"
android:resource="@xml/device admin receiver" />
<intent-filter>
<action android:name="android.intent.action.BOOT COMPLETED" />

android:
android:
android:

android:
android:
android:

android:

GP* ' kSECURITY

<action android:name="android.app.action.DEVICE ADMIN ENABLED" />
<action android:name="android.app.action.PROFILE OWNER CHANGED" />
<action android:name="android.app.action.DEVICE OWNER CHANGED" />
</intent-filter>
</receiver>
<activity
name="com.acurast.attested.executor.lockdown.AdminPolicyComplianceActivity"
permission="android.permission.BIND DEVICE ADMIN" android:exported="true"
screenOrientation="portrait">
<intent-filter>
<action android:name="android.app.action.ADMIN POLICY COMPLIANCE" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
<activity
name="com.acurast.attested.executor.lockdown.ProvisioningModeActivity"
permission="android.permission.BIND DEVICE ADMIN" android:exported="true"
screenOrientation="portrait">
<intent-filter>
<action android:name="android.app.action.GET PROVISIONING MODE" />
<category android:name="android.intent.category.DEFAULT" />
</intent-filter>
</activity>
<meta-data android:name="io.sentry.auto-init" android:value="false" />
<provider android:name="androidx.startup.InitializationProvider"
exported="false" android:authorities="com.acurast.attested.executor.canary.androidx-

startup">

android:
android:

android:

android:

android:
android:

/>

<meta-data android:name="androidx.emoji2.text.EmojiCompatInitializer"
value="androidx.startup" />
<meta-data android:name="androidx.lifecycle.ProcessLifecycleInitializer"
value="androidx.startup" />
<meta-data android:name="androidx.profileinstaller.ProfileInstallerInitializer"
value="androidx.startup" />
</provider>
<meta-data android:name="com.google.android.gms.version"
value="@integer/google play services version" />
<receiver android:name="androidx.profileinstaller.ProfileInstallReceiver"
permission="android.permission.DUMP" android:enabled="true" android:exported="true"
directBootAware="false">
<intent-filter>
<action android:name="androidx.profileinstaller.action.INSTALL PROFILE" />
</intent-filter>
<intent-filter>
<action android:name="androidx.profileinstaller.action.SKIP FILE" />
</intent-filter>
<intent-filter>
<action android:name="androidx.profileinstaller.action.SAVE PROFILE" />
</intent-filter>
<intent-filter>
<action android:name="androidx.profileinstaller.action.BENCHMARK OPERATION"

</intent-filter>
</receiver>

</application>
</manifest>

GP* ' kSECURITY

Details #7

App's screenshot:

Overview

Device Load

Connection

Manager:
Attestation:

Version 1.4.0-canary

4.3 App Development & Release

4.3.1 Distribution

n Description of Test Expected Result Actual Result PASS
FAIL

Can the app be installed on an unsupported No, the minimum API level The minimum required APl FAIL
version of Android? prevents installation on level is 30. This
unsupported versions. corresponds to Android 11

that is no longer supported.
Taking into account how
relevant the integrity of the
device is for
trustworthiness of its
computations, supporting
devices with old,
unpatched OSes poses a

risk.
2. What signature versions does the app use? The present signatures As expected, v3 and earlier PASS
have versions consistent are used.
with the targeted and
minimum API levels.
3. What is the key length of the app's signing Minimum 2048-bit RSA key 2048-bit RSA key. PASS
certificate? or equivalent.
4, Is the debuggable attribute setto true inthe No. As expected. PASS

manifest?

4.3.2 Third-Party Components & Libraries
. Description of Test Expected Result Actual Result PASS
FAIL

Are any third-party libraries used?

2. Are any of the used libraries outdated? No. No, the important j2v8 PASS
library is used in the latest
version although it was not
updated since 2021.

&, Are there any known vulnerabilities in the used No. As expected. PASS
libraries?

4. Do binary libraries have NX bit set? Yes. As expected. PASS

5 Do binary libraries use stack canaries? Yes. No, libsweet_b.so library FAIL
does not use stack
canaries.

6. Do binary libraries have full RELRO enabled? Yes. No, libj2v8.so library for FAIL
arm64 does not have full
RELRO.

Details #2

The used version of j2v8 was released in 2021 (https://mvnrepository.com/artifact/com.eclipsesource.j2v8/j2v8), anyway the
latest version is used. From build.gradle:

com.eclipsesource.j2v8:j2v8:6.2.1Qaar

Details #4-6

Using checksec (https://github.com/slimm609/checksec.sh), the following properties of app's binaries were retrieved:
filename nx canary relro
processor-1.4.0-canary/lib/arm64-v8a/1ibj2v8.so yes yes no
processor-1.4.0-canary/lib/arm64-v8a/libsweet b.so yes no full
processor-1.4.0-canary/lib/armeabi-v7a/1libj2v8.so yes yes full
processor-1.4.0-canary/lib/armeabi-v7a/libsweet b.so yes no full

4.3.3 Embedded Information

. Description of Test Expected Result Actual Result PASS
FAIL

Are any hardcoded passwords present in the 0. As expected. PASS
app?
2. Are any API keys present in the app? Only the keys that need to As expected. PASS
be stored in the app are
there.
3. Are any cryptographic keys stored in the app? No if they are used for As expected, only test PASS
important cryptographic private keys in
operations. com.google.api.clien

t.testing.json.webto
ken.TestCertificates
were found.

4. Are there any hints present in the decompiled No, the code released in Nothing found. PASS
code that indicate presence of unfinished the app is free from
functionalities or debug features? immature code.

https://mvnrepository.com/artifact/com.eclipsesource.j2v8/j2v8
https://github.com/slimm609/checksec.sh

4.4 Device Security

4.4.1 Root Detection

Gb‘ ' kSECURITY

. Description of Test Expected Result Actual Result PASS
FAIL

Is a root detection mechanism implemented?

2. Does the app still work normally on a rooted
device?

4.4.2 Play Integrity

Yes, for apps handling INFO

sensitive information

No explicit mechanism is
present.

No, or at least critical
functionalities are disabled.

If the device was rooted by PASS
unlocking its bootloader

and modifying the boot

partition, this would be

reflected in the key

attestation.

. Description of Test Expected Result Actual Result PASS
FAIL

Does the app use the Play Integrity API to
check device integrity?

2. If standard API requests are used, does
requestHash include a digest of all relevant
values from the app's request?

3. If classic API requests are used, does nonce
contain a unique value generated on the server
side?

4, If classic API requests are used, does nonce

include a digest of all relevant values from the
app's request?

5 Is it possible to reuse the integrity token
obtained from a classic API request?

6. Do the nonce or requestHash values used
contain any cleartext sensitive data?

7. Is the integrity token obtained from a classic API
request only verified on the device?

8. Is the MEETS DEVICE INTEGRITY integrity
label required to pass the integrity check?

9. Is the MEETS STRONG INTEGRITY integrity
label required to pass the integrity check?

10. What happens if the Play Integrity API call fails?

FAIL

Yes, all values that need to N/A

be protected are included.

Not applicable.

Yes, a unique value is used Not applicable. N/A
to protect against replay

attacks.

Yes, to protect the contents Not applicable. N/A
of the app's request against
tampering.

No, the backend server N/A
validates the uniqueness

and freshness of the

nonce.

Not applicable.

No, the value of N/A
requestHash in a

standard API request and

the value of nonce in a

classic API request are

collected by Google Play.

Not applicable.

No, the response token is N/A
decrypted and validated on

the server side.

Not applicable.

Yes. Not applicable. N/A

Yes, for apps that require a Not applicable. N/A

high level of security.

If errors persist after a few N/A
retries, all integrity checks

should be considered

failed.

Not applicable.

GP‘ ' kSECURITY
. Description of Test Expected Result Actual Result PASS
FAIL

11. Can Magisk No, either the Not applicable.
(https://github.com/topjohnwu/Magisk) with Play MEETS_STRONG_ INTEGRI
Integrity Fix module TY integrity label should be
(https://github.com/chiteroman/PlayIntegrityFix) required, or other
be used to bypass the integrity checks? mechanisms should be

implemented to prevent
this easy bypass.

4.4.3 Device Lockdown Policy

. Description of Test Expected Result Actual Result PASS
FAIL

Is it possible to use the app on a not locked . No unless the attacker has PASS
down device? root privileges on the
device.
2. Is it possible to install other apps on the locked No. No. Although the tested PASS
device? app can install apps, only

apps with a whitelisted
hash can be installed.
Other methods of app
installation are blocked.

3. Is it possible to use Bluetooth on the locked No unless needed. No. PASS
device?

4, Is it possible to modify wireless networking No unless needed. Yes, but connecting to a PASS
settings on the locked device? wireless network to get

Internet access is required.

5 Is it possible to attach an external storage drive No unless needed. Yes, PASS
to the locked device? no usb file transfer
and no_physical media
are not set, however using
an external storage for
updating the app is

necessary.
6. Is it possible to activate ADB on the locked No. As expected. PASS
device?
Details #2-5

The following restrictions are applied:

INSTALL RESTRICTIONS = CollectionsKt.listOf ((Object[]) new String[]{"no install apps",
"no install unknown sources", "no install unknown sources globally"}):;

RESTRICTIONS = CollectionsKt.arrayListOf ("no_add user", "no_ adjust volume",

"no ambient display", "no control apps", "no autofill", "no bluetooth",

"no bluetooth sharing", "no config bluetooth", "no config brightness",

"no config cell broadcasts", "no config credentials", "no config date time",

"no config locale", "no config location", "no config mobile networks",
"disallow config private dns", "no config screen timeout", "no config tethering",

"no config vpn", "no content capture", "no create windows", "no cross profile copy paste",
"no data roaming", "no debugging features", "no fun", "no install apps",

"no install unknown sources", "no install unknown sources globally", "no set wallpaper",
"no printing", "no modify accounts", "no system error dialogs", "no sms",

"no network reset", "no outgoing beam", "no outgoing calls", "no remove user",

"no unified password", "no uninstall apps", "no unmute microphone", "no user switch");

Details #6

com.acurast.attested.executor.lockdown.Lockdown.java:
devicePolicyManager.setGlobalSetting (componentName, "adb enabled", "O");

4.5 Network Communication

45,1 Communication Partners

No. | Description of Test Expected Result Actual Result PASS
FAIL
N/A

1. What servers does the app communicate with?

2. Is data received from or transmitted to third-
party servers?

3. Does the used network security configuration
allow cleartext traffic?

4. Does the used network security configuration
modify the set of trust anchors?

4.5.2 TLS Settings

It needs to be ensured that
no sensitive information is
sent to third-party servers
and all data obtained from
third-party servers is
handled securely.

No.

The app should not
weaken the default
settings.

GP‘ ' kSECURITY

acurast-canarynet-
node.prod.gke.acurast.com
and other servers as
specified in the job.

Only requests specified in
the job will be sent to third-
party servers. No direct
issues of handling those
requests were found.

No network security
configuration was defined.

No network security
configuration was defined.

PASS

N/A

N/A

Description of Test Expected Result Actual Result PASS
FAIL

1. Is the communication between the app and all
servers secured with TLS?

2. Does the app verify the server certificate?

3. Does the app verify whether the hostname from
the certificate matches the server it
communicates with?

4. Does the app perform certificate pinning?

Details #1

Yes.

Yes, it is not possible to
perform a Man-in-the-
Middle attack using a self-
signed certificate.

Yes, a valid certificate for
one hostname cannot be
used to intercept traffic to
another hostname.

Yes, the app does not trust
the CA list of Android but
performs additional
certificate checks, e.g.:

= Certissuer
= Cert hash

No, the tzBTC job in the
version available during the
security audit intended to
access an IP address via
HTTP.

As expected.

As expected.

No, but as the app is meant
to execute arbitrary jobs, it
cannot restrict what
certificates should be
considered trusted. The
extended certificate
validation could
nevertheless happen in a
job or the job's results
could contain the certificate
chain obtained from the
server.

The tzBTC job (https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-

INFO

PASS

PASS

PASS

[blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts) that was not in the final version yet contained http

requests to an IP address:

import ECPairFactory from "ecpair";
import * as ecc from "tiny-secp256kl";
import { testnet,

regtest } from "bitcoinjs-lib/src/networks";

https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts

Gb‘ ' kSECURITY

import https from "https";
import http from "http";
import { sha256 } from "bitcoinjs-lib/src/crypto";

console.log("starting")
[CUT BY COMPASS]
const bitcoinRPCPostCall = function (method: string, params: any([]): Promise<any> {
return new Promise ((resolve, reject) => {
const payload = JSON.stringify ({
"jsonrpc": "1.0",
"id": "curltest",
"method": method,
"params": params
})
const options = {
method: 'POST',
hostname: "172.17.0.1",
port: 18443,
headers: {

"User-Agent": "Mozilla/5.0",

"Content-Type": 'application/json',

"Content-Length": payload.length,

//"x-api-key": "[CUT BY COMPASS]"

'Authorization': 'Basic ' + Buffer.from('a:b').toString('base6d"')

by
}
const req = http
.request (
options,
(res) => {
const data: Buffer[] = [];

res.on("data", (chunk: Buffer) => {
data.push (chunk) ;
})

res.on ("end", () => {
resolve (JSON.parse (Buffer.concat (data) .toString())) ;
})
}
)
reg.write (payload)
reg.on ("error", (err) => {
reject ("Error: " + err.message);
})
})

4.6 Android KeyStore

. Description of Test Expected Result Actual Result PASS
FAIL

Does the app make sure that the keys are Yes, Keys are required to be in PASS
bound to the hardware? isInsideSecureHardwa the StrongBox, if

re () is called, or the StrongBox is available.

properties of the keys are

verified with

getSecurityLevel ().

2. Have all the keys been generated in the Android Keys generated in a Yes, all keys were PASS
KeyStore? hardware-backed Android generated in the keystore.
KeyStore were never
exposed outside the secure
hardware. Imported keys
were available to the app
process.

e‘ P‘ ' kSECURITY

. Description of Test Expected Result Actual Result PASS
FAIL

Are there any other properties of the keys that
are incorrectly set?

4. Is user authentication required to use the keys?

4.7 Device Attestation

No, the purposes of the
keys, allowed usage
modes, paddings, etc. were
set correctly.

Depending on the use
case, some keys may need
to be used without prior
user authentication.

As expected. PASS

Not needed for the tested PASS
app.

. Description of Test Expected Result Actual Result PASS
FAIL

Is it possible to obtain attestation on a
compromised device?

2. How cat users of the tzBTC be sure that only
correctly signed job answers are accepted?

3. How cat users of the tzBTC be sure that the
keys used to sign job answers are trustworthy?

4. How can users of the tzBTC be sure that the job
being executed on the processor is the
expected script?

It was possible to obtain FAIL
attestation on a device with
unlocked bootloader and
modified boot partition.
Then modify the code
during the runtime of the
app using Frida hooking
framework. Nevertheless,
the key attestation
submitted to the acurast
parachain showed that the
device should not be
considered attested as the
root of trust was invalid.

On-chain signatures for PASS
Bitcoin and Tezos

transactions are created by

the processors, so the

validity of signatures is

verified on-chain. Note that

this part of the tzBTC

ecosystem was not

explicitly tested.

The confirmation of the job PASS
sent from the device

includes public keys that

can be used to verify the

signatures of job answers.

That confirmation is signed

with the processor's key.

In the confirmation of the PASS
job sent from the device,

there is the job creator and

job's id. It is possible to see

on the acurast parachain

what IPFA link the job with

the particular id has.

Description of Test Expected Result Actual Result PASS
FAIL

5 How can users of the tzBTC be sure that the - During the processor FAIL

processor's key is trustworthy? registration, key attestation
of the processor's key is
published on the acurast
parachain. Currently it is
possible to view the parsed
attestation:
https://polkadot.js.org/apps/
2rpc=wss%3A%2F%2Facu
rast-canarynet-
ws.prod.gke.papers.tech#/c
hainstate. However, to get
the original message with
the actual attestation
statement searching
through the blockchain
would be needed.

6. How can users of the tzBTC be sure that the - In the key attestation FAIL

usage of the processor's key is trustworthy? statement, there are values
present that represent the
app's package name and
the digest of the certificate
used to sign the app.
However, no information
about what the code of the
app is is present. Although
to update the app on the
processor, the apk's hash
needs to be present in a
whitelist — this is checked
by the already installed
processor app, no
verification of the initial apk
can be performed by users
of the tzBTC.

Details #1

For 5GFar8NXmx6CVGiN64mYtiuwNphYXn8JHKNmMReosv5FGGbrh, attestation could be obtained and in the acurast
console the device was shown as attested:

Devices + Add New Device

5GFar8N...5FGGbrh
(M Lastseenon Mar 22, 2024, 2:50:08 PM @ ‘ Remove I

.d‘,‘
Aftested 0.5 g 140

However, in the parsed attestation statement stored on the acurast parachain, it is shown that the root of trust for this
particular device is invalid:

[

[
5GFar8NXmx6CVGiN64mYtiuwNphYXn8 JHKNmReosv5FGGbrh

]
{

certIds: [

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.

GP* ' *SECURITY

0x301b311930170603550405131066393230303965383533623662303435
0x00e8fal96314d2fals

0x301b311930170603550405131066393230303965383533623662303435
0x060d896bdc60a576a5947be0895£5989

]

[

0x303£f31123010060355040c0c095374726f6e67426£783129302706035504051320663364663139376231343163
3933343763376461663033373565633066393439
0x56922401ba9238309bdac006c2ac251d
]
[

0x303£31123010060355040c0c095374726£6e67426£783129302706035504051320303638343266383462636261
6462643139363430356266643661363334396562
0x01
]
]
keyDescription: {
attestationSecurityLevel: StrongBox
keyMintSecurityLevel: StrongBox
softwareEnforced: ({
purpose: null
algorithm: null
keySize: null
digest: null
padding: null
ecCurve: null
rsaPublicExponent: null
mgfDigest: null
rollbackResistance: false
earlyBootOnly: false
activeDateTime: null
originationExpireDateTime: null
usageExpireDateTime: null
usageCountLimit: null
noAuthRequired: false
userAuthType: null
authTimeout: null
allowWhileOnBody: false
trustedUserPresenceRequired: false
trustedConfirmationRequired: false
unlockedDeviceRequired: false
allApplications: null
applicationId: null
creationDateTime: 1,710,956,123,346
origin: null
rootOfTrust: null
osVersion: null
osPatchLevel: null
attestationApplicationId: {
packageInfos: [
{
packageName: com.acurast.attested.executor.canary
version: 26
}
]
signatureDigests: [
0xec70c2a4e072a0£586552a68357b23697c9d45f1el1257a8c4d29%9a25ac4982433
1
}
attestationIdBrand: null
attestationIdDevice: null
attestationIdProduct: null
attestationIdSerial: null
attestationIdImei: null
attestationIdMeid: null
attestationIdManufacturer: null
attestationIdModel: null

}

vendorPatchLevel: null
bootPatchLevel: null
deviceUniqueAttestation: false

teeEnforced: {

purpose: 0x020306
algorithm: 3
keySize: 256
digest: 0x00
padding: null
ecCurve: 1
rsaPublicExponent: null
mgfDigest: null
rollbackResistance: false
earlyBootOnly: false
activeDateTime: null
originationExpireDateTime: null
usageExpireDateTime: null
usageCountLimit: null
noAuthRequired: true
userAuthType: null
authTimeout: null
allowWhileOnBody: false
trustedUserPresenceRequired: false
trustedConfirmationRequired: false
unlockedDeviceRequired: false
allApplications: null
applicationId: null
creationDateTime: null
origin: 0
rootOfTrust: {

verifiedBootKey:

0x00

devicelocked: false
verifiedBootState: Unverified
verifiedBootHash:

0x3ed2237b2aeedl1b0a856£7227746£29ee6b9al19f60b34d553dd9c93e312a0bbcl

}
}

}

osVersion: 130,000
osPatchLevel: 202,309
attestationApplicationId: null
attestationIdBrand: null
attestationIdDevice: null
attestationIdProduct: null
attestationIdSerial: null
attestationIdImei: null
attestationIdMeid: null
attestationIdManufacturer: null
attestationIdModel: null
vendorPatchLevel: 20,230,901
bootPatchLevel: 20,230,901
deviceUniqueAttestation: false

validity: {
notBefore: 0
notAfter: 2,461,449,600,000

Details #5

Signature digest from the attestation:

attestationApplicationId: {
packageInfos: [
{
packageName: com.acurast.attested.executor.canary
version: 26

GP* ' *SECURITY

Gb‘ V ksacurzmr
signatureDigests: [

0xec70c2a4e072a0£586552a68357b23697c9d45f1el257a8c4d29%9a25ac4982433
]

This is the same value as the signature of the certificate used to sign the app:

$ apksigner verify -v --print-certs processor-1.4.0-canary.apk

Picked up JAVA OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true
Verifies

Verified using vl scheme
Verified using v2 scheme

JAR signing): false

APK Signature Scheme v2): false

Verified using v3 scheme (APK Signature Scheme v3): true

Verified using v4 scheme (APK Signature Scheme v4): false

Verified for SourceStamp: false

Number of signers: 1

Signer #1 certificate DN: O=Acurast, L=Zug, ST=Zug, C=CH

Signer #1 certificate SHA-256 digest:
ec70c2a4e072a0£586552a68357b23697c9d45f1el257a8c4d29a25ac4982433

Signer #1 certificate SHA-1 digest: 2cbe58b09ce8f794c34bf63c5bd2076cadll31lc79
Signer #1 certificate MD5 digest: 4£f243e72eaf337d63a943£f5d161£5206

Signer #1 key algorithm: RSA

Signer #1 key size (bits): 2048

Signer #1 public key SHA-256 digest:
2fc2adb3f006£d242£8df7fda8eba2503c08214632a2752£26d6c0dca68d39%ec

Signer #1 public key SHA-1 digest: c7a636a94285a9pb2591736ceaebal05b2b0dl76b
Signer #1 public key MD5 digest: 93ec720bccb49967a7a85b716cea99d0

4.8 Job Execution

Description of Test Expected Result Actual Result PASS
FAIL

1. What jobs are supposed to be run on the tzBTC Only the required jobs. A single tzBTC job will be PASS
processor apps? run.
2. How can the integrity of the expected job be Strong, externally verifiable Job code is hosted on PASS
assured? integrity assurance should IPFS. During the
be performed. generation of the job

confirmation by the
processor, a public key is
registered, signatures
depend on the hash of the

script.
3. Who is allowed to create jobs for processors Processors should not Only jobs created by a PASS
used in tzBTC? accept arbitrary jobs. specified account should

be executed.

4. Are there any security issues with the tzBTC No. During the timeframe of the INFO

job? security audit, the code of
the job was still in the
development phase
(https://gitlab.papers.tech/p
apers/customer-tezos-
foundation/tzbtc-v2/tzbtc-
acurast-jobs/-
[blob/61b5917a7831f8dc7e
456a0d532a422051df0864/
src/tzbtc jobs.ts). Security
posture of the job was
analyzed based on similar
jobs and interviews with
developers. No general
issues were found,
however, it will need to be
checked whether the final
version works as expected.

https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts

. Description of Test Expected Result Actual Result PASS
FAIL

Can anyone run jobs of for the tzBTC? Depends on the use case. No, only 10 processors PASS
If yes, the discrepancies of shared among 5 entities
the job answers need to be are intended to run the
securely handled. tzBTC jobs.

Gb* ' kSECURITY

5 Appendix

5.1 Compass Weaknesses Rating

Compass rates weaknesses based on their intrinsic technical properties. It should be noted that it is not a risk rating. Neither a
threat actor's motivation (e.g., financial gain, fame, etc.) nor financial loss incurred by a successful exploitation of a weakness
are taken into consideration.

All weaknesses are usually rated in isolation without considering the environment or any additional security controls that might
be in place (i.e., vulnerabilities are rated in the context in which they are discovered).

A general description of each rating is given in the table below:

Critical = Exploitation requires little effort, no user interaction, no elevated privileges, or combination with other
issues
= Successful exploitation has an immediate critical impact on the application/system: disclosure,
manipulation or loss of sensitive data, elevation of privileges, disruption of service availability, etc.

High = Exploitation typically requires additional resources: user permissions, user interaction, large amounts of
time/computing power, etc.
= Central security features & controls are turned off/not used
= Security-relevant processes or concepts are neither defined, nor implemented

Medium = Exploitation typically requires significant effort and/or combination with other issues
= Security features & controls are implemented, but not configured according to best practices
= Security-relevant processes or concepts are defined, but important aspects are missing, unclear, or do not
follow best practices

Low = Exploitation typically leads to disclosure of information that is not sensitive but might be used in broader
attack efforts (e.g., version information, user account names, etc.)
= Security features & controls are implemented with minor deviations from best practices
= Security-relevant processes or concepts are defined, but minor aspects are missing, unclear, or do not
follow best practices

Info = The entry is purely informational and has no security impact

The customer should review the individual weaknesses and their ratings and assign a risk score based on the company's risk
management processes. Based on these risk scores, the customer should decide how and when the risk is handled (e.g.,
mitigate, accept, transfer, avoid).

5.2 Recheck Coloring

The following color code is used in rechecks to show the current state of a weakness:

Fixed Partially Fixed Not Fixed New Not Rechecked

	Executive Summary
	Results
	General Recommendations

	1 Overview
	1.1 Document Structure
	1.2 Scope and Procedures

	2 Possible Attack Vectors
	2.1 tzBTC Android App Analysis

	3 Vulnerabilities and Remediation
	3.1 tzBTC Android App Analysis

	4 tzBTC Android App Analysis
	4.1 Overview
	4.1.1 Backend Environment / URIs
	4.1.2 Devices

	4.2 Basic Information
	Details #6
	Details #7

	4.3 App Development & Release
	4.3.1 Distribution
	4.3.2 Third-Party Components & Libraries
	Details #2
	Details #4-6

	4.3.3 Embedded Information

	4.4 Device Security
	4.4.1 Root Detection
	4.4.2 Play Integrity
	4.4.3 Device Lockdown Policy
	Details #2-5
	Details #6

	4.5 Network Communication
	4.5.1 Communication Partners
	4.5.2 TLS Settings
	Details #1

	4.6 Android KeyStore
	4.7 Device Attestation
	Details #1
	Details #5

	4.8 Job Execution

	5 Appendix
	5.1 Compass Weaknesses Rating
	5.2 Recheck Coloring

