

<<Klassifizierung>>, <<Projektnummer>>, <<Version>>, <<Kapitel Nr. + Text>> 1/25

Compass Security Schweiz AG, Werkstrasse 20, CH-8645 Jona

T +41 58 510 36 00, team.csch@compass-security.com, www.compass-security.com

Tezos Foundation
Pentest tzBTC Android App

Document Name: report_89395_Pentest_tzBTC_Android_App_v1.0.docx

Version: v1.0

Project Number: 89395

Date of Delivery: March 27th, 2024

Time of Test: March 18th, 2024 - March 22nd, 2024

Author: Lukasz Dykcik, Compass Security Schweiz AG

Classification: STRICTLY CONFIDENTIAL

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Executive Summary 2/25

Executive Summary

Compass Security Schweiz AG conducted a security assessment of the tzBTC acurast processor app. This
section briefly highlights the most important results and provides recommendations for future steps. Technical
details are provided in subsequent chapters.

Results

The performed review of the mobile app did not result in a discovery of any high-rated vulnerabilities. The concept
of using mobile devices with a hardware security element to provide decentralized validation used by tzBTC, as
well as its implementation, was rated as mature. Nevertheless, a few security deficiencies have been identified
and a number of possible attacks that would eradicate the trust put in the tzBTC processors have been found.

The following diagram gives an overview of the identified vulnerabilities and their severity:

General Recommendations

Compass Security recommends that critical vulnerabilities be immediately reviewed and addressed.

All remaining issues listed in the vulnerability table in chapter 3 as well as the presented possible attack vectors
described in chapter 2 should be discussed internally. The risk of all the vulnerabilities should be assessed and
addressed based on the company-internal risk management process and the technical rating proposed by
Compass Security.

0 0

2

4

tzBTC Android App Analysis

Critical

High

Medium

Low

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Table of Contents 3/25

Table of Contents

EXECUTIVE SUMMARY .. 2

Results ... 2
General Recommendations ... 2

1 OVERVIEW... 4

1.1 Document Structure .. 4
1.2 Scope and Procedures ... 4

2 POSSIBLE ATTACK VECTORS .. 5

2.1 tzBTC Android App Analysis .. 5

3 VULNERABILITIES AND REMEDIATION ... 7

3.1 tzBTC Android App Analysis .. 7

4 TZBTC ANDROID APP ANALYSIS ... 10

4.1 Overview ... 10
4.2 Basic Information .. 10
4.3 App Development & Release ... 13
4.4 Device Security ... 15
4.5 Network Communication... 17
4.6 Android KeyStore .. 18
4.7 Device Attestation ... 19
4.8 Job Execution ... 23

5 APPENDIX.. 25

5.1 Compass Weaknesses Rating ... 25
5.2 Recheck Coloring ... 25

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 1 Overview 4/25

1 Overview

This document is intended for project teams, development personnel, and other individuals concerned with the
security of the tested app. The purpose of this document is to summarize the results of the security assessment.

1.1 Document Structure

Chapter Content

- Executive summary

1 Document overview, scope, and procedure

2 A list of the possible attack vectors as well as suggestions for their mitigation

3 A list of the identified weaknesses as well as suggestions for improvement

4 Protocol of the performed security tests

5 Appendix

1.2 Scope and Procedures

The security assessment covered the following:

Target Module Effort

tzBTC Acurast Processor App M1 Android App Review 4 PD

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 2 Possible Attack Vectors 5/25

2 Possible Attack Vectors

This chapter summarizes the attack vectors that are not immediately possible to be performed but their execution would require exploiting an additional vulnerability. A definition for each
table column is given here:

No. Reference Attack Scenario Requirements Remediation Difficulty Comment

Each attack is
numbered
consecutively.

Reference to the
corresponding test case in
the following chapters, if
applicable.

Explains the attack
scenario identified during
the assessment.

Explains the preconditions
of the attack scenario to be
exploited.

Explanation how the attack
can be avoided or
mitigated.

Compass rating of the
difficulty performing the
attack:
▪ Low
▪ Medium
▪ High.

Comment and
information provided
by the customer.

2.1 tzBTC Android App Analysis

No. Reference Attack Scenario Requirements Remediation Difficulty Comment

1. - Faking Attestation

An attacker could obtain the valid key
attestation by installing the app on an
older non-rooted device. Then, by
exploiting a privilege escalation
vulnerability, the attacker will be able to
undermine the app's integrity during
runtime.

The attacker would need to be able to
obtain root privileges on any of the
allowed Android OS versions without
unlocking the boot loader. For this an
arbitrary local privilege elevation exploit
would suffice.
Note that there are already publicly
available proof-of-concept exploits for
older Android OS.

The OS version and OS patch level
values are present in the key attestation
in the reliable teeEnforced sequence.
These values should be considered when
labelling the device as attested. Ideally,
only the latest patch level should be
required to pass attestation and
re-attestation should be performed after
each patch release.

Low

2. - Job Escape

An attacker could deploy a malicious job
on processors used for tzBTC. Then,
exploit a weakness in the job processing
component of the app and obtain code
execution in the context of the Android
app, not restricted by the JavaScript
execution environment. Once the attacker
is able to execute code within the app,
using the cryptographic keys stored in the
Keystore is not restricted.

This attack requires the ability to run
attacker-controlled malicious jobs on
processors used for the tzBTC.
Furthermore, as just executing a job
would not lead to the compromise of the
tzBTC since each job uses its own keys,
the attacker would need to escape from
the job context into the app context.

For the tzBTC, it is already intended that
the used processors only accept jobs
from one specified account. It needs to be
ensured that this account is appropriately
protected from unauthorized access.
Alternatively, multiple accounts could be
used. A subset of processors used for
tzBTC could accept jobs only from one
account and another subset only from the
other account. In this way, even if the
attacker compromised one of the
accounts and exploited some processors
with a malicious job, other processors
would remain unaffected.

Medium

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 2 Possible Attack Vectors 6/25

No. Reference Attack Scenario Requirements Remediation Difficulty Comment

3. - App Installation on a Compromised
Device

The attack would work as follows: an
attacker compromises an older Android
device and establishes persistence on the
device that allows it to be updated to one
of the versions of the Android OS that are
considered acceptable in the attestation,
without losing root access.

A way of rooting a device and establishing
persistence that survives factory reset
required for app provisioning is needed.
Also, the way of maintaining root
privileges on the device should not rely on
unlocking the bootloader or modifying the
boot partition since those changes would
affect the key attestation. Furthermore, if
the Android OS version that could be
used to get the required persistent root
access is not considered acceptable in
the attestation, a way of maintaining root
access after updating the device will be
required.

It should be ensured that only latest patch
levels of the Android OS are accepted for
the attestation. Furthermore, regular Play
Integrity checks should be performed to
take advantage of the Google API
providing device integrity checks.

Medium

4. - Compromising Locked Down Device

This attack could be performed after the
app was provisioned on a not
compromised device and attestation was
successfully completed. The attacker
would then attempt to exploit the locked
down device to manipulate the integrity of
the app running on it.

The attacker would need to exploit one of
the exposed interfaces of the locked down
device. Currently devices expose mostly
the Wi-Fi and the USB mass storage
interfaces. The exploit would either need
to provide code execution on the Android
device with root privileges or another
privilege escalation exploit would need to
be used afterwards.
Note that the attacker is not restricted to a
particular device hardware model as
plenty of Android devices would be
accepted as processors and exploitation
of the exposed interfaces may be
noticeably easier on some of the devices.

The locked down device should expose
as few interfaces as possible. It is already
planned to disable USB mass storage as
it will not be needed in further releases.
Furthermore, it should be considered that
only devices from established
manufacturers such as Google are
accepted for the attestation of tzBTC
processors.

High

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 3 Vulnerabilities and Remediation 7/25

3 Vulnerabilities and Remediation

This chapter summarizes the security issues found during the security review. A definition for each table column is given here:

No. Reference Weakness Threat Remediation Rating Comment

Each issue is
numbered
consecutively.

Reference to the
corresponding test case in
the following chapters.

Explains the weakness
identified during the
assessment.

Explains the impact of the
weakness if it were to be
exploited.

Recommendation on how
to address the weakness.

Compass rating of the
weakness and the
corresponding threat:
▪ Critical
▪ High
▪ Medium
▪ Low
▪ Info

See chapter 5 for a
detailed rating description
and color code definition.

Comment and
information provided
by the customer.

3.1 tzBTC Android App Analysis

No. Reference Weakness Threat Remediation Rating Comment

1. 4.7 #1 Spoofed Attestation

Untrustworthy devices with unlocked
bootloader and modified boot partition are
shown as attested in the acurast console.

Although in the key attestation present on
the acurast parachain, it is shown that the
root of trust for the key is not appropriate,
relying on the values shown in the acurast
console leads to the false conclusion.

It should be ensured that the values
shown in the acurast console are
trustworthy. In particular, all relevant
elements of the key attestation, in
particular the root of trust, should be
correctly evaluated before the device is
labeled as attested.

Medium

2. 4.3.1 #1

Unsupported Android Versions

The minimum API level of the app is set
to 30. This API level corresponds to an
Android version that is no longer
supported.

Security updates are no longer available
for devices running this specific version of
Android. An Attacker could exploit known
vulnerabilities to gain root privileges on
the device and compromise the integrity
of the app and the data it processes.

Only Android versions that can receive
security patches should be supported by
the app.

Medium

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 3 Vulnerabilities and Remediation 8/25

No. Reference Weakness Threat Remediation Rating Comment

3. 4.7 #5,6 Vague Chain of Trust

Users of the tzBTC can barely verify the
trust assumptions on their own.
Although the original, unparsed key
attestations are present on the
blockchain, to find them, particular
transactions would need to be found.
Parsed key attestations are put in the on-
chain storage and are easily browsable,
however, the validity of the attestation
cannot be inducted from this parsed data.
Furthermore, the integrity of the app
cannot be externally verified as no hash
of it is present in the attestation.

During the initial deployment of the app, a
malicious version signed with the same
certificate could be deployed and users of
tzBTC would not be able to determine
whether the legitimate or malicious app
has access to the attested private key.
Also, verification of the key attestation of
the processor is cumbersome.

The issues should be mitigated to provide
an easy way for users of the tzBTC to
verify that only the legitimate app can use
the attested private key.

Note that it is already planned to provide
a user-friendly view of the processors' key
attestations and the problem of trusting
the initial app installation is also planned
to be addressed.

Low

4. 4.3.2 #5

No Stack Canaries

The app uses libraries that were not
compiled with stack canaries:

▪ libsweet_b.so.

Stack canaries, also called stack cookies,
are placed after buffers in a program to
guard against buffer overflow
vulnerabilities. If this feature is not
enabled, the executable does not make
use of this additional layer of protection.

Only libraries with enabled stack canaries
should be used.

Low

5. 4.3.2 #6

No Relocation Read-Only (RELRO)

The libj2v8.so library for arm64 is not
compiled with the Relocation Read-Only
(RELRO) enabled.

When RELRO is not enabled in Android
binary libraries, it leaves the door open for
attackers to exploit memory-related
vulnerabilities more easily. Without
RELRO, the Global Offset Table (GOT)
remains writable, and an attacker could
potentially manipulate function pointers
and control the program's execution flow.

Only libraries with RELRO enabled should
be used.

Low

6. 4.4.1 #1
4.4.2 #1

Play Integrity Not Used

The Play Integrity API provided by Google
is not used to detect whether the device
where the app runs is rooted.

Without using the Play Integrity API, the
trustworthiness of the job's execution on
the processor may be diminished by
attacks on the device's integrity that
occurred after the initial key attestation
and are detectable by Play Integrity.

The app should call the Play Integrity API
at important moments to get a proof that
job results are coming from the
unmodified app binary running on a
genuine Android device.

More information:

▪ https://developer.android.com/google
/play/integrity

Low

https://developer.android.com/google/play/integrity
https://developer.android.com/google/play/integrity

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 3 Vulnerabilities and Remediation 9/25

No. Reference Weakness Threat Remediation Rating Comment

7. 4.8 #4
4.5.2 #1

Job for tzBTC Still in Development

During the tests, the actual job code of
the tzBTC was not yet ready. The security
of the tzBTC was reviewed based on jobs
with similar functionalities and the
not-yet-finished tzBTC job.

- It should be reviewed whether the final
version of the tzBTC job differs
significantly from the analyzed jobs and
possibly introduces vulnerabilities into the
tzBTC that could not be discovered during
the performed security audit.

Info

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 10/25

4 tzBTC Android App Analysis

4.1 Overview

4.1.1 Backend Environment / URIs

URI Description

acurast-canarynet-node.prod.gke.acurast.com CANARY environment

4.1.2 Devices

Device Model Android Version Root Status

Pixel 4a 13 Rooted.

Pixel 4a 11 Rooted.

Pixel 7a 13 Rooted.

4.2 Basic Information

No. Description of Test Expected Result Actual Result PASS
FAIL

1. App Name - Acurast Processor
(CANARY)

N/A

2. Version Name - 1.4.0-canary N/A

3. Version Code - 26 N/A

4. Package Name - com.acurast.attested.execu
tor.canary

N/A

5. SHA256 Checksum of the app - 5569b4db6e759fc8c82754
2e125c6ed1cd7933a25d5c
ecedc5c0c9ea44733d2a

N/A

6. Contents of AndroidManifest.xml - See details. N/A

7. App Screenshot - See details. N/A

Details #6

Android Manifest:

<?xml version="1.0" encoding="utf-8"?>

<manifest android:versionCode="26" android:versionName="1.4.0-canary"

android:compileSdkVersion="33" android:compileSdkVersionCodename="13"

package="com.acurast.attested.executor.canary" platformBuildVersionCode="33"

platformBuildVersionName="13"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <uses-sdk android:minSdkVersion="30" android:targetSdkVersion="33" />

 <uses-permission android:name="android.permission.REQUEST_INSTALL_PACKAGES" />

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.SCHEDULE_EXACT_ALARM" />

 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

 <uses-permission android:name="android.permission.REQUEST_IGNORE_BATTERY_OPTIMIZATIONS"

/>

 <uses-permission android:name="android.permission.WAKE_LOCK" />

 <uses-permission android:name="android.permission.FOREGROUND_SERVICE" />

 <uses-permission android:name="android.permission.QUERY_ALL_PACKAGES" />

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 11/25

 <permission

android:name="com.acurast.attested.executor.canary.DYNAMIC_RECEIVER_NOT_EXPORTED_PERMISSION"

android:protectionLevel="signature" />

 <uses-permission

android:name="com.acurast.attested.executor.canary.DYNAMIC_RECEIVER_NOT_EXPORTED_PERMISSION"

/>

 <application android:theme="@style/Theme.Acurast" android:label="@string/app_name"

android:icon="@mipmap/ic_launcher" android:name="com.acurast.attested.executor.App"

android:testOnly="false" android:supportsRtl="true" android:extractNativeLibs="false"

android:roundIcon="@mipmap/ic_launcher_round"

android:appComponentFactory="androidx.core.app.CoreComponentFactory">

 <service android:name="com.acurast.attested.executor.services.V8ExecutorService"

android:enabled="true" android:exported="true" />

 <service android:name="com.acurast.attested.executor.services.JobFetcherService"

android:enabled="true" android:exported="true" />

 <service android:name="com.acurast.attested.executor.services.HeartbeatService"

android:enabled="true" android:exported="true" />

 <service android:name="com.acurast.attested.executor.services.OTAUpdateService"

android:enabled="true" android:exported="true" />

 <receiver android:name="com.acurast.attested.executor.InstallReceiver" />

 <receiver android:name="com.acurast.attested.executor.JobFetcherBroadcastReceiver"

android:enabled="true" android:exported="true">

 <intent-filter android:directBootAware="true">

 <action android:name="android.intent.action.BOOT_COMPLETED" />

 <action android:name="android.intent.action.LOCKED_BOOT_COMPLETED" />

 <action android:name="android.intent.action.QUICKBOOT_POWERON" />

 <action android:name="android.intent.action.REBOOT" />

 </intent-filter>

 </receiver>

 <receiver android:name="com.acurast.attested.executor.HeartbeatBroadcastReceiver"

android:enabled="true" android:exported="true" />

 <receiver android:name="com.acurast.attested.executor.OTAUpdateBroadcastReceiver"

android:enabled="true" android:exported="true" />

 <receiver android:name="com.acurast.attested.executor.V8ExecutorBroadcastReceiver"

android:enabled="true" android:exported="true" />

 <receiver

android:name="com.acurast.attested.executor.AlarmPermissionBroadcastReceiver"

android:enabled="true" android:exported="true">

 <intent-filter>

 <action

android:name="android.app.action.SCHEDULE_EXACT_ALARM_PERMISSION_STATE_CHANGED" />

 </intent-filter>

 </receiver>

 <activity android:theme="@style/Theme.Acurast"

android:name="com.acurast.attested.executor.ui.MainActivity" android:exported="true"

android:excludeFromRecents="true" android:launchMode="singleInstance">

 <intent-filter>

 <category android:name="android.intent.category.HOME" />

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 <category android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="http" android:host="executor.acurast.com" />

 </intent-filter>

 <intent-filter>

 <action android:name="android.app.action.PROVISIONING_SUCCESSFUL" />

 <action android:name="android.app.action.PROFILE_PROVISIONING_COMPLETE" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 </activity>

 <receiver android:label="@string/app_name"

android:name="com.acurast.attested.executor.lockdown.LockdownDeviceAdminReceiver"

android:permission="android.permission.BIND_DEVICE_ADMIN" android:exported="true"

android:description="@string/app_name">

 <meta-data android:name="android.app.device_admin"

android:resource="@xml/device_admin_receiver" />

 <intent-filter>

 <action android:name="android.intent.action.BOOT_COMPLETED" />

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 12/25

 <action android:name="android.app.action.DEVICE_ADMIN_ENABLED" />

 <action android:name="android.app.action.PROFILE_OWNER_CHANGED" />

 <action android:name="android.app.action.DEVICE_OWNER_CHANGED" />

 </intent-filter>

 </receiver>

 <activity

android:name="com.acurast.attested.executor.lockdown.AdminPolicyComplianceActivity"

android:permission="android.permission.BIND_DEVICE_ADMIN" android:exported="true"

android:screenOrientation="portrait">

 <intent-filter>

 <action android:name="android.app.action.ADMIN_POLICY_COMPLIANCE" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 </activity>

 <activity

android:name="com.acurast.attested.executor.lockdown.ProvisioningModeActivity"

android:permission="android.permission.BIND_DEVICE_ADMIN" android:exported="true"

android:screenOrientation="portrait">

 <intent-filter>

 <action android:name="android.app.action.GET_PROVISIONING_MODE" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 </activity>

 <meta-data android:name="io.sentry.auto-init" android:value="false" />

 <provider android:name="androidx.startup.InitializationProvider"

android:exported="false" android:authorities="com.acurast.attested.executor.canary.androidx-

startup">

 <meta-data android:name="androidx.emoji2.text.EmojiCompatInitializer"

android:value="androidx.startup" />

 <meta-data android:name="androidx.lifecycle.ProcessLifecycleInitializer"

android:value="androidx.startup" />

 <meta-data android:name="androidx.profileinstaller.ProfileInstallerInitializer"

android:value="androidx.startup" />

 </provider>

 <meta-data android:name="com.google.android.gms.version"

android:value="@integer/google_play_services_version" />

 <receiver android:name="androidx.profileinstaller.ProfileInstallReceiver"

android:permission="android.permission.DUMP" android:enabled="true" android:exported="true"

android:directBootAware="false">

 <intent-filter>

 <action android:name="androidx.profileinstaller.action.INSTALL_PROFILE" />

 </intent-filter>

 <intent-filter>

 <action android:name="androidx.profileinstaller.action.SKIP_FILE" />

 </intent-filter>

 <intent-filter>

 <action android:name="androidx.profileinstaller.action.SAVE_PROFILE" />

 </intent-filter>

 <intent-filter>

 <action android:name="androidx.profileinstaller.action.BENCHMARK_OPERATION"

/>

 </intent-filter>

 </receiver>

 </application>

</manifest>

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 13/25

Details #7

App's screenshot:

4.3 App Development & Release

4.3.1 Distribution

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Can the app be installed on an unsupported
version of Android?

No, the minimum API level
prevents installation on
unsupported versions.

The minimum required API
level is 30. This
corresponds to Android 11
that is no longer supported.
Taking into account how
relevant the integrity of the
device is for
trustworthiness of its
computations, supporting
devices with old,
unpatched OSes poses a
risk.

FAIL

2. What signature versions does the app use? The present signatures
have versions consistent
with the targeted and
minimum API levels.

As expected, v3 and earlier
are used.

PASS

3. What is the key length of the app's signing
certificate?

Minimum 2048-bit RSA key
or equivalent.

2048-bit RSA key. PASS

4. Is the debuggable attribute set to true in the

manifest?

No. As expected. PASS

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 14/25

4.3.2 Third-Party Components & Libraries

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Are any third-party libraries used? - Yes. N/A

2. Are any of the used libraries outdated? No. No, the important j2v8
library is used in the latest
version although it was not
updated since 2021.

PASS

3. Are there any known vulnerabilities in the used
libraries?

No. As expected. PASS

4. Do binary libraries have NX bit set? Yes. As expected. PASS

5. Do binary libraries use stack canaries? Yes. No, libsweet_b.so library
does not use stack
canaries.

FAIL

6. Do binary libraries have full RELRO enabled? Yes. No, libj2v8.so library for
arm64 does not have full
RELRO.

FAIL

Details #2

The used version of j2v8 was released in 2021 (https://mvnrepository.com/artifact/com.eclipsesource.j2v8/j2v8), anyway the
latest version is used. From build.gradle:

com.eclipsesource.j2v8:j2v8:6.2.1@aar

Details #4-6

Using checksec (https://github.com/slimm609/checksec.sh), the following properties of app's binaries were retrieved:

filename nx canary relro

processor-1.4.0-canary/lib/arm64-v8a/libj2v8.so yes yes no

processor-1.4.0-canary/lib/arm64-v8a/libsweet_b.so yes no full

processor-1.4.0-canary/lib/armeabi-v7a/libj2v8.so yes yes full

processor-1.4.0-canary/lib/armeabi-v7a/libsweet_b.so yes no full

4.3.3 Embedded Information

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Are any hardcoded passwords present in the
app?

No. As expected. PASS

2. Are any API keys present in the app? Only the keys that need to
be stored in the app are
there.

As expected. PASS

3. Are any cryptographic keys stored in the app? No if they are used for
important cryptographic
operations.

As expected, only test
private keys in
com.google.api.clien

t.testing.json.webto

ken.TestCertificates

were found.

PASS

4. Are there any hints present in the decompiled
code that indicate presence of unfinished
functionalities or debug features?

No, the code released in
the app is free from
immature code.

Nothing found. PASS

https://mvnrepository.com/artifact/com.eclipsesource.j2v8/j2v8
https://github.com/slimm609/checksec.sh

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 15/25

4.4 Device Security

4.4.1 Root Detection

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Is a root detection mechanism implemented? Yes, for apps handling
sensitive information

No explicit mechanism is
present.

INFO

2. Does the app still work normally on a rooted
device?

No, or at least critical
functionalities are disabled.

If the device was rooted by
unlocking its bootloader
and modifying the boot
partition, this would be
reflected in the key
attestation.

PASS

4.4.2 Play Integrity

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Does the app use the Play Integrity API to
check device integrity?

Yes. No. FAIL

2. If standard API requests are used, does
requestHash include a digest of all relevant

values from the app's request?

Yes, all values that need to
be protected are included.

Not applicable. N/A

3. If classic API requests are used, does nonce

contain a unique value generated on the server
side?

Yes, a unique value is used
to protect against replay
attacks.

Not applicable. N/A

4. If classic API requests are used, does nonce

include a digest of all relevant values from the
app's request?

Yes, to protect the contents
of the app's request against
tampering.

Not applicable. N/A

5. Is it possible to reuse the integrity token
obtained from a classic API request?

No, the backend server
validates the uniqueness
and freshness of the
nonce.

Not applicable. N/A

6. Do the nonce or requestHash values used

contain any cleartext sensitive data?

No, the value of
requestHash in a

standard API request and
the value of nonce in a

classic API request are
collected by Google Play.

Not applicable. N/A

7. Is the integrity token obtained from a classic API
request only verified on the device?

No, the response token is
decrypted and validated on
the server side.

Not applicable. N/A

8. Is the MEETS_DEVICE_INTEGRITY integrity

label required to pass the integrity check?

Yes. Not applicable. N/A

9. Is the MEETS_STRONG_INTEGRITY integrity

label required to pass the integrity check?

Yes, for apps that require a
high level of security.

Not applicable. N/A

10. What happens if the Play Integrity API call fails? If errors persist after a few
retries, all integrity checks
should be considered
failed.

Not applicable. N/A

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 16/25

No. Description of Test Expected Result Actual Result PASS
FAIL

11. Can Magisk
(https://github.com/topjohnwu/Magisk) with Play
Integrity Fix module
(https://github.com/chiteroman/PlayIntegrityFix)
be used to bypass the integrity checks?

No, either the
MEETS_STRONG_INTEGRI

TY integrity label should be

required, or other
mechanisms should be
implemented to prevent
this easy bypass.

Not applicable. N/A

4.4.3 Device Lockdown Policy

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Is it possible to use the app on a not locked
down device?

No. No unless the attacker has
root privileges on the
device.

PASS

2. Is it possible to install other apps on the locked
device?

No. No. Although the tested
app can install apps, only
apps with a whitelisted
hash can be installed.
Other methods of app
installation are blocked.

PASS

3. Is it possible to use Bluetooth on the locked
device?

No unless needed. No. PASS

4. Is it possible to modify wireless networking
settings on the locked device?

No unless needed. Yes, but connecting to a
wireless network to get
Internet access is required.

PASS

5. Is it possible to attach an external storage drive
to the locked device?

No unless needed. Yes,
no_usb_file_transfer

and no_physical_media

are not set, however using
an external storage for
updating the app is
necessary.

PASS

6. Is it possible to activate ADB on the locked
device?

No. As expected. PASS

Details #2-5

The following restrictions are applied:

INSTALL_RESTRICTIONS = CollectionsKt.listOf((Object[]) new String[]{"no_install_apps",

"no_install_unknown_sources", "no_install_unknown_sources_globally"});

RESTRICTIONS = CollectionsKt.arrayListOf("no_add_user", "no_adjust_volume",

"no_ambient_display", "no_control_apps", "no_autofill", "no_bluetooth",

"no_bluetooth_sharing", "no_config_bluetooth", "no_config_brightness",

"no_config_cell_broadcasts", "no_config_credentials", "no_config_date_time",

"no_config_locale", "no_config_location", "no_config_mobile_networks",

"disallow_config_private_dns", "no_config_screen_timeout", "no_config_tethering",

"no_config_vpn", "no_content_capture", "no_create_windows", "no_cross_profile_copy_paste",

"no_data_roaming", "no_debugging_features", "no_fun", "no_install_apps",

"no_install_unknown_sources", "no_install_unknown_sources_globally", "no_set_wallpaper",

"no_printing", "no_modify_accounts", "no_system_error_dialogs", "no_sms",

"no_network_reset", "no_outgoing_beam", "no_outgoing_calls", "no_remove_user",

"no_unified_password", "no_uninstall_apps", "no_unmute_microphone", "no_user_switch");

Details #6

com.acurast.attested.executor.lockdown.Lockdown.java:

devicePolicyManager.setGlobalSetting(componentName, "adb_enabled", "0");

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 17/25

4.5 Network Communication

4.5.1 Communication Partners

No. Description of Test Expected Result Actual Result PASS
FAIL

1. What servers does the app communicate with? - acurast-canarynet-
node.prod.gke.acurast.com
and other servers as
specified in the job.

N/A

2. Is data received from or transmitted to third-
party servers?

It needs to be ensured that
no sensitive information is
sent to third-party servers
and all data obtained from
third-party servers is
handled securely.

Only requests specified in
the job will be sent to third-
party servers. No direct
issues of handling those
requests were found.

PASS

3. Does the used network security configuration
allow cleartext traffic?

No. No network security
configuration was defined.

N/A

4. Does the used network security configuration
modify the set of trust anchors?

The app should not
weaken the default
settings.

No network security
configuration was defined.

N/A

4.5.2 TLS Settings

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Is the communication between the app and all
servers secured with TLS?

Yes. No, the tzBTC job in the
version available during the
security audit intended to
access an IP address via
HTTP.

INFO

2. Does the app verify the server certificate? Yes, it is not possible to
perform a Man-in-the-
Middle attack using a self-
signed certificate.

As expected. PASS

3. Does the app verify whether the hostname from
the certificate matches the server it
communicates with?

Yes, a valid certificate for
one hostname cannot be
used to intercept traffic to
another hostname.

As expected. PASS

4. Does the app perform certificate pinning? Yes, the app does not trust
the CA list of Android but
performs additional
certificate checks, e.g.:

▪ Cert issuer
▪ Cert hash

No, but as the app is meant
to execute arbitrary jobs, it
cannot restrict what
certificates should be
considered trusted. The
extended certificate
validation could
nevertheless happen in a
job or the job's results
could contain the certificate
chain obtained from the
server.

PASS

Details #1

The tzBTC job (https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-
/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts) that was not in the final version yet contained http
requests to an IP address:

import ECPairFactory from "ecpair";

import * as ecc from "tiny-secp256k1";

import { testnet, regtest } from "bitcoinjs-lib/src/networks";

https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 18/25

import https from "https";

import http from "http";

import { sha256 } from "bitcoinjs-lib/src/crypto";

console.log("starting")

[CUT BY COMPASS]

const bitcoinRPCPostCall = function (method: string, params: any[]): Promise<any> {

 return new Promise((resolve, reject) => {

 const payload = JSON.stringify({

 "jsonrpc": "1.0",

 "id": "curltest",

 "method": method,

 "params": params

 })

 const options = {

 method: 'POST',

 hostname: "172.17.0.1",

 port: 18443,

 headers: {

 "User-Agent": "Mozilla/5.0",

 "Content-Type": 'application/json',

 "Content-Length": payload.length,

 //"x-api-key": "[CUT BY COMPASS]",

 'Authorization': 'Basic ' + Buffer.from('a:b').toString('base64')

 },

 }

 const req = http

 .request(

 options,

 (res) => {

 const data: Buffer[] = [];

 res.on("data", (chunk: Buffer) => {

 data.push(chunk);

 })

 res.on("end", () => {

 resolve(JSON.parse(Buffer.concat(data).toString()));

 })

 }

)

 req.write(payload)

 req.on("error", (err) => {

 reject("Error: " + err.message);

 })

 })

}

4.6 Android KeyStore

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Does the app make sure that the keys are
bound to the hardware?

Yes,
isInsideSecureHardwa

re() is called, or the

properties of the keys are
verified with
getSecurityLevel().

Keys are required to be in
the StrongBox, if
StrongBox is available.

PASS

2. Have all the keys been generated in the Android
KeyStore?

Keys generated in a
hardware-backed Android
KeyStore were never
exposed outside the secure
hardware. Imported keys
were available to the app
process.

Yes, all keys were
generated in the keystore.

PASS

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 19/25

No. Description of Test Expected Result Actual Result PASS
FAIL

3. Are there any other properties of the keys that
are incorrectly set?

No, the purposes of the
keys, allowed usage
modes, paddings, etc. were
set correctly.

As expected. PASS

4. Is user authentication required to use the keys? Depending on the use
case, some keys may need
to be used without prior
user authentication.

Not needed for the tested
app.

PASS

4.7 Device Attestation

No. Description of Test Expected Result Actual Result PASS
FAIL

1. Is it possible to obtain attestation on a
compromised device?

No. It was possible to obtain
attestation on a device with
unlocked bootloader and
modified boot partition.
Then modify the code
during the runtime of the
app using Frida hooking
framework. Nevertheless,
the key attestation
submitted to the acurast
parachain showed that the
device should not be
considered attested as the
root of trust was invalid.

FAIL

2. How cat users of the tzBTC be sure that only
correctly signed job answers are accepted?

- On-chain signatures for
Bitcoin and Tezos
transactions are created by
the processors, so the
validity of signatures is
verified on-chain. Note that
this part of the tzBTC
ecosystem was not
explicitly tested.

PASS

3. How cat users of the tzBTC be sure that the
keys used to sign job answers are trustworthy?

- The confirmation of the job
sent from the device
includes public keys that
can be used to verify the
signatures of job answers.
That confirmation is signed
with the processor's key.

PASS

4. How can users of the tzBTC be sure that the job
being executed on the processor is the
expected script?

- In the confirmation of the
job sent from the device,
there is the job creator and
job's id. It is possible to see
on the acurast parachain
what IPFA link the job with
the particular id has.

PASS

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 20/25

No. Description of Test Expected Result Actual Result PASS
FAIL

5. How can users of the tzBTC be sure that the
processor's key is trustworthy?

- During the processor
registration, key attestation
of the processor's key is
published on the acurast
parachain. Currently it is
possible to view the parsed
attestation:
https://polkadot.js.org/apps/
?rpc=wss%3A%2F%2Facu
rast-canarynet-
ws.prod.gke.papers.tech#/c
hainstate. However, to get
the original message with
the actual attestation
statement searching
through the blockchain
would be needed.

FAIL

6. How can users of the tzBTC be sure that the
usage of the processor's key is trustworthy?

- In the key attestation
statement, there are values
present that represent the
app's package name and
the digest of the certificate
used to sign the app.
However, no information
about what the code of the
app is is present. Although
to update the app on the
processor, the apk's hash
needs to be present in a
whitelist – this is checked
by the already installed
processor app, no
verification of the initial apk
can be performed by users
of the tzBTC.

FAIL

Details #1

For 5GFar8NXmx6CVGiN64mYtiuwNphYXn8JHKNmReosv5FGGbrh, attestation could be obtained and in the acurast
console the device was shown as attested:

However, in the parsed attestation statement stored on the acurast parachain, it is shown that the root of trust for this
particular device is invalid:

 [

 [

 5GFar8NXmx6CVGiN64mYtiuwNphYXn8JHKNmReosv5FGGbrh

]

 {

 certIds: [

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Facurast-canarynet-ws.prod.gke.papers.tech#/chainstate.

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 21/25

 [

 0x301b311930170603550405131066393230303965383533623662303435

 0x00e8fa196314d2fa18

]

 [

 0x301b311930170603550405131066393230303965383533623662303435

 0x060d896bdc60a576a5947be0895f5989

]

 [

0x303f31123010060355040c0c095374726f6e67426f783129302706035504051320663364663139376231343163

3933343763376461663033373565633066393439

 0x569a2401ba9238309bdac006c2ac251d

]

 [

0x303f31123010060355040c0c095374726f6e67426f783129302706035504051320303638343266383462636261

6462643139363430356266643661363334396562

 0x01

]

]

 keyDescription: {

 attestationSecurityLevel: StrongBox

 keyMintSecurityLevel: StrongBox

 softwareEnforced: {

 purpose: null

 algorithm: null

 keySize: null

 digest: null

 padding: null

 ecCurve: null

 rsaPublicExponent: null

 mgfDigest: null

 rollbackResistance: false

 earlyBootOnly: false

 activeDateTime: null

 originationExpireDateTime: null

 usageExpireDateTime: null

 usageCountLimit: null

 noAuthRequired: false

 userAuthType: null

 authTimeout: null

 allowWhileOnBody: false

 trustedUserPresenceRequired: false

 trustedConfirmationRequired: false

 unlockedDeviceRequired: false

 allApplications: null

 applicationId: null

 creationDateTime: 1,710,956,123,346

 origin: null

 rootOfTrust: null

 osVersion: null

 osPatchLevel: null

 attestationApplicationId: {

 packageInfos: [

 {

 packageName: com.acurast.attested.executor.canary

 version: 26

 }

]

 signatureDigests: [

 0xec70c2a4e072a0f586552a68357b23697c9d45f1e1257a8c4d29a25ac4982433

]

 }

 attestationIdBrand: null

 attestationIdDevice: null

 attestationIdProduct: null

 attestationIdSerial: null

 attestationIdImei: null

 attestationIdMeid: null

 attestationIdManufacturer: null

 attestationIdModel: null

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 22/25

 vendorPatchLevel: null

 bootPatchLevel: null

 deviceUniqueAttestation: false

 }

 teeEnforced: {

 purpose: 0x020306

 algorithm: 3

 keySize: 256

 digest: 0x00

 padding: null

 ecCurve: 1

 rsaPublicExponent: null

 mgfDigest: null

 rollbackResistance: false

 earlyBootOnly: false

 activeDateTime: null

 originationExpireDateTime: null

 usageExpireDateTime: null

 usageCountLimit: null

 noAuthRequired: true

 userAuthType: null

 authTimeout: null

 allowWhileOnBody: false

 trustedUserPresenceRequired: false

 trustedConfirmationRequired: false

 unlockedDeviceRequired: false

 allApplications: null

 applicationId: null

 creationDateTime: null

 origin: 0

 rootOfTrust: {

 verifiedBootKey:

0x00

 deviceLocked: false

 verifiedBootState: Unverified

 verifiedBootHash:

0x3ed2237b2aeed1b0a856f7227746f29ee6b9a19f6b34d553dd9c93e312a0bbc1

 }

 osVersion: 130,000

 osPatchLevel: 202,309

 attestationApplicationId: null

 attestationIdBrand: null

 attestationIdDevice: null

 attestationIdProduct: null

 attestationIdSerial: null

 attestationIdImei: null

 attestationIdMeid: null

 attestationIdManufacturer: null

 attestationIdModel: null

 vendorPatchLevel: 20,230,901

 bootPatchLevel: 20,230,901

 deviceUniqueAttestation: false

 }

 }

 validity: {

 notBefore: 0

 notAfter: 2,461,449,600,000

 }

 }

]

Details #5

Signature digest from the attestation:

 attestationApplicationId: {

 packageInfos: [

 {

 packageName: com.acurast.attested.executor.canary

 version: 26

 }

]

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 23/25

 signatureDigests: [

 0xec70c2a4e072a0f586552a68357b23697c9d45f1e1257a8c4d29a25ac4982433

]

 }

This is the same value as the signature of the certificate used to sign the app:

$ apksigner verify -v --print-certs processor-1.4.0-canary.apk

Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true

Verifies

Verified using v1 scheme (JAR signing): false

Verified using v2 scheme (APK Signature Scheme v2): false

Verified using v3 scheme (APK Signature Scheme v3): true

Verified using v4 scheme (APK Signature Scheme v4): false

Verified for SourceStamp: false

Number of signers: 1

Signer #1 certificate DN: O=Acurast, L=Zug, ST=Zug, C=CH

Signer #1 certificate SHA-256 digest:

ec70c2a4e072a0f586552a68357b23697c9d45f1e1257a8c4d29a25ac4982433

Signer #1 certificate SHA-1 digest: 2cbe58b09ce8f794c34bf63c5bd2076cad131c79

Signer #1 certificate MD5 digest: 4f243e72eaf337d63a943f5d161f5206

Signer #1 key algorithm: RSA

Signer #1 key size (bits): 2048

Signer #1 public key SHA-256 digest:

2fc2adb3f006fd242f8df7fda8eba2503c08214632a2752f26d6c0dca68d39ec

Signer #1 public key SHA-1 digest: c7a636a94285a9b2591736ceaeba105b2b0d176b

Signer #1 public key MD5 digest: 93ec720bccb49967a7a85b716cea99d0

4.8 Job Execution

No. Description of Test Expected Result Actual Result PASS
FAIL

1. What jobs are supposed to be run on the tzBTC
processor apps?

Only the required jobs. A single tzBTC job will be
run.

PASS

2. How can the integrity of the expected job be
assured?

Strong, externally verifiable
integrity assurance should
be performed.

Job code is hosted on
IPFS. During the
generation of the job
confirmation by the
processor, a public key is
registered, signatures
depend on the hash of the
script.

PASS

3. Who is allowed to create jobs for processors
used in tzBTC?

Processors should not
accept arbitrary jobs.

Only jobs created by a
specified account should
be executed.

PASS

4. Are there any security issues with the tzBTC
job?

No. During the timeframe of the
security audit, the code of
the job was still in the
development phase
(https://gitlab.papers.tech/p
apers/customer-tezos-
foundation/tzbtc-v2/tzbtc-
acurast-jobs/-
/blob/61b5917a7831f8dc7e
456a0d532a422051df0864/
src/tzbtc_jobs.ts). Security
posture of the job was
analyzed based on similar
jobs and interviews with
developers. No general
issues were found,
however, it will need to be
checked whether the final
version works as expected.

INFO

https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts
https://gitlab.papers.tech/papers/customer-tezos-foundation/tzbtc-v2/tzbtc-acurast-jobs/-/blob/61b5917a7831f8dc7e456a0d532a422051df0864/src/tzbtc_jobs.ts

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 4 tzBTC Android App Analysis 24/25

No. Description of Test Expected Result Actual Result PASS
FAIL

5. Can anyone run jobs of for the tzBTC? Depends on the use case.
If yes, the discrepancies of
the job answers need to be
securely handled.

No, only 10 processors
shared among 5 entities
are intended to run the
tzBTC jobs.

PASS

STRICTLY CONFIDENTIAL, Project 89395, v1.0, Section 5 Appendix 25/25

5 Appendix

5.1 Compass Weaknesses Rating

Compass rates weaknesses based on their intrinsic technical properties. It should be noted that it is not a risk rating. Neither a
threat actor's motivation (e.g., financial gain, fame, etc.) nor financial loss incurred by a successful exploitation of a weakness
are taken into consideration.

All weaknesses are usually rated in isolation without considering the environment or any additional security controls that might
be in place (i.e., vulnerabilities are rated in the context in which they are discovered).

A general description of each rating is given in the table below:

Rating Description

Critical ▪ Exploitation requires little effort, no user interaction, no elevated privileges, or combination with other
issues

▪ Successful exploitation has an immediate critical impact on the application/system: disclosure,
manipulation or loss of sensitive data, elevation of privileges, disruption of service availability, etc.

High ▪ Exploitation typically requires additional resources: user permissions, user interaction, large amounts of
time/computing power, etc.

▪ Central security features & controls are turned off/not used
▪ Security-relevant processes or concepts are neither defined, nor implemented

Medium ▪ Exploitation typically requires significant effort and/or combination with other issues
▪ Security features & controls are implemented, but not configured according to best practices
▪ Security-relevant processes or concepts are defined, but important aspects are missing, unclear, or do not

follow best practices

Low ▪ Exploitation typically leads to disclosure of information that is not sensitive but might be used in broader
attack efforts (e.g., version information, user account names, etc.)

▪ Security features & controls are implemented with minor deviations from best practices
▪ Security-relevant processes or concepts are defined, but minor aspects are missing, unclear, or do not

follow best practices

Info ▪ The entry is purely informational and has no security impact

The customer should review the individual weaknesses and their ratings and assign a risk score based on the company's risk
management processes. Based on these risk scores, the customer should decide how and when the risk is handled (e.g.,
mitigate, accept, transfer, avoid).

5.2 Recheck Coloring

The following color code is used in rechecks to show the current state of a weakness:

Fixed Partially Fixed Not Fixed New Not Rechecked

	Executive Summary
	Results
	General Recommendations

	1 Overview
	1.1 Document Structure
	1.2 Scope and Procedures

	2 Possible Attack Vectors
	2.1 tzBTC Android App Analysis

	3 Vulnerabilities and Remediation
	3.1 tzBTC Android App Analysis

	4 tzBTC Android App Analysis
	4.1 Overview
	4.1.1 Backend Environment / URIs
	4.1.2 Devices

	4.2 Basic Information
	Details #6
	Details #7

	4.3 App Development & Release
	4.3.1 Distribution
	4.3.2 Third-Party Components & Libraries
	Details #2
	Details #4-6

	4.3.3 Embedded Information

	4.4 Device Security
	4.4.1 Root Detection
	4.4.2 Play Integrity
	4.4.3 Device Lockdown Policy
	Details #2-5
	Details #6

	4.5 Network Communication
	4.5.1 Communication Partners
	4.5.2 TLS Settings
	Details #1

	4.6 Android KeyStore
	4.7 Device Attestation
	Details #1
	Details #5

	4.8 Job Execution

	5 Appendix
	5.1 Compass Weaknesses Rating
	5.2 Recheck Coloring

